scholarly journals Thermal regime of the local working zone in the industrial premises under radiant heating conditions

2021 ◽  
Vol 2057 (1) ◽  
pp. 012124
Author(s):  
G V Kuznetsov ◽  
V I Maksimov ◽  
T A Nagornova ◽  
A V Vyatkin

Abstract The results of experimental studies on recording temperatures and heat fluxes for the local working zone in industrial premises under radiant heating conditions and supply and exhaust ventilation operation are presented. The characteristics are measured on the surface of the horizontal remote panel directly under the radiator and along the wall with the ventilation inlet. Experimental results show that mixed convection caused by the operation of air exchange systems leads to mixing of air masses and more intensive cooling of the horizontal panel surface, as well as air, compared to the natural convection regime.

1970 ◽  
Vol 42 (1) ◽  
pp. 17-31 ◽  
Author(s):  
A. P. Hatton ◽  
D. D. James ◽  
H. W. Swire

This article describes experimental work on the mixed convection régime with flow normal to electrically heated cylinders. The forcing velocities used were in the range 0·0085–3 ft./sec (i.e. 10−2 < Ref < 45) and temperature differences in the range 30°C to 200°C (i.e. 10−3 < Ra < 10) were covered.Correlations are proposed for the forced convection and natural convection conditions. A correlation is also developed for the combined forced and natural convection region by a vectorial addition of the flow parameters, which gives good agreement with the experiments except over a limited range in the contraflow régime.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012033
Author(s):  
D A Shvetsov ◽  
A N Pavlenko ◽  
A E Brester ◽  
V I Zhukov

Abstract The paper presents the results of the study of the evaporation and boiling regimes in thin horizontal layers of liquid on a modified surface in a wide range of changes in the pressure and height of the liquid layer. Depending on the heat flux, pressure, and height of the liquid layer, the formation of various structures was observed. In this paper, maps of the evaporation and boiling regimes are obtained, which show the heat fluxes from the natural convection regime up to the boiling crisis, depending on the height of the liquid layer. The results are compared with the calculation dependencies.


1990 ◽  
Vol 112 (4) ◽  
pp. 952-958 ◽  
Author(s):  
S. H. Park ◽  
C. L. Tien

This paper presents a new, simple, but powerful technique for nonsimilar natural and assisting mixed convection heat transfer problems in which thermal boundary conditions are specified arbitrarily even with step discontinuities. Temperature and velocity fields for natural convection over thermally nonuniform surfaces are formulated in terms of equivalent Grashof numbers defined by the superposition of surface heat fluxes and velocities obtained from similarity analyses for isoflux or isothermal surfaces. A local heat transfer rate for assisting mixed convection over thermally nonuniform surfaces is approximated using Nusselt numbers for pure forced and pure natural convection over such surfaces, which are obtained by the superposition method. Comparisons with existing similarity solutions, experimental results, and numerical solutions validate the use of this simple superposition method in many practical situations such as cooling configurations in electronic and manufacturing equipment.


Author(s):  
A Jodat ◽  
M Moghiman

In the present study, the applicability of widely used evaporation models (Dalton approach-based correlations) is experimentally investigated for natural, forced, and combined convection regimes. A series of experimental measurements are carried out over a wide range of water temperatures and air velocities for 0.01 ≤ Gr/Re2 ≤ 100 in a heated rectangular pool. The investigations show that the evaporation rate strongly depends on the convection regime's Gr/ Re2 value. The results show that the evaporation rate increases with the difference in vapour pressures over both forced convection (0.01 ≤ Gr/Re2 ≤ 0.1) and turbulent mixed convection regimes (0.15 ≤ Gr/Re2 ≤ 25). However, the escalation rate of evaporation decreases with Gr/ Re2 in the forced convection regime whereas in the turbulent mixed convection it increases. In addition, over the range of the free convection regime ( Gr/Re2 ≥ 25), the evaporation rate is affected not only by the vapour pressure difference but also by the density variation. A dimensionless correlation using the experimental data of all convection regimes (0.01 ≤ Gr/Re2 ≤ 100) is proposed to cover different water surface geometries and airflow conditions.


Author(s):  
Lun Feng ◽  
William G. Fahrenholtz ◽  
Donald W. Brenner

Herein, we critically evaluate computational and experimental studies in the emerging field of high-entropy ultra-high-temperature ceramics. High-entropy ultra-high-temperature ceramics are candidates for use in extreme environments that include temperatures over 2,000°C, heat fluxes of hundreds of watts per square centimeter, or irradiation from neutrons with energies of several megaelectron volts. Computational studies have been used to predict the ability to synthesize stable high-entropy materials as well as the resulting properties but face challenges such asthe number and complexity of unique bonding environments that are possible for these compositionally complex compounds. Experimental studies have synthesized and densified a large number of different high-entropy borides and carbides, but no systematic studies of composition-structure-property relationships have been completed. Overall, this emerging field presents a number of exciting research challenges and numerous opportunities for future studies. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Da Liu ◽  
Fujun Gan ◽  
Chaozhu Zhang ◽  
Hanyang Gu

Experiments of heat transfer at low flow rate are performed in a 5×5 square arrayed rod bundles. The diameter of the rod is 10mm with a pitch of 13.3mm, length of the test section is about 3 meters. Inlet Reynold number ranges from 2000 to 30000, Bo * ranges from 4×10−6 to 5×10−3. The rods are heated using a DC power, the heat flux ranges from 30 to 300 kW/m2. The experiment is aimed to investigate the buoyancy effect of mixed convection in rod bundles. The experimental data shows that similar with mixed convection in circular channels, buoyancy force has great effect on heat transfer at mixed convection regime in rod bundles. But the buoyancy effect appears at higher Bo* conditions. The spacer effect have also been investigated at both turbulent forced convection regime and mixed convection regime. The reconstruction of heat transfer downstream of spacers is different at different flow regimes, a reasonable explanation was provided.


2018 ◽  
Vol 875 ◽  
pp. 137-140 ◽  
Author(s):  
Valery N. Azarov ◽  
Natalia M. Sergina ◽  
I.V. Stefanenko

It was proposed to use air flow screw straightened units in outlet pipe of the dust collectors to reduce the aerodynamic resistance of exhaust ventilation systems. It is allowed to decrease power consumption for their maintenance operation consequently. The article describes the results of experimental studies to evaluate its effectiveness by applying the tangential screw straightened unit within ventilation system. The obtained results showed that the use of this device allows reducing the aerodynamic resistance of the cyclone by 14.6%, and for counter-swirling flows’ dust collector (CSFC) by 17.2-23.6%. It was found that meanings of the aerodynamic resistance depend on value the share proportion of the flow entering into lower CSFC apparatus’ input.


Sign in / Sign up

Export Citation Format

Share Document