scholarly journals Energy density distribution of a modulated electron beam in a source with a plasma cathode based on a low pressure arc

2021 ◽  
Vol 2064 (1) ◽  
pp. 012066
Author(s):  
V I Shin ◽  
P V Moskvin ◽  
M S Vorobyov ◽  
V N Devyatkov ◽  
N N Koval

Abstract The article presents the results of studies devoted to the study of the energy density distribution in the amplitude-modulated regime of electron beam generation. It is shown that in the first ≈ 50 μs of the duration of the beam current pulse, its spatial rearrangement occurs, due to the development of the arc discharge current. Thus, the rearrangement of the arc current, which develops from the axis of the system, leads to an axial diving of the emission current density and the beam current density on the target. With the development of the arc current, the energy density on the target on the axis of the system decreases and after ≈ 50 μs takes on a steady-state value, which can change only as a result of a change in the conditions for generating an electron beam or the transition to a modulated regime of electron beam generation. It has been experimentally shown using calorimetric measurements that the shape of the electron beam current pulse with its amplitude modulation with a pulse duration of more than 100 μs has little effect on the distribution of the beam energy density in the target region.

2021 ◽  
Vol 2064 (1) ◽  
pp. 012031
Author(s):  
D A Sorokin ◽  
M I Lomaev ◽  
A V Dyatlov ◽  
V F Tarasenko

Abstract The study of the time behavior of a current pulse of an electron beam generated during a high-voltage nanosecond discharge in gas-filled and vacuum diodes has been carried out. As follows from the experimental results, in both cases, the distribution of the beam current density in the plane of a grounded anode is non-uniform. The highest beam current density is recorded in the axial part of the anode. It was established that in the case of a gas-filled diode, ~ 2 ns after the onset of the beam current pulse, its shape in the axial anode zone changes relative to that in the peripheral one. It is assumed that the most probable reason for this is the effect of compensation of the charge of the beam electrons by the positive charge of ions arising in the ionization process in the paraxial zone.


1988 ◽  
Vol 31 (10) ◽  
pp. 966-967
Author(s):  
V. I. Andreev ◽  
A. P. Palivoda ◽  
S. P. Fetisov ◽  
N. V. Shalomeeva ◽  
V. A. Yakovlev

Sign in / Sign up

Export Citation Format

Share Document