scholarly journals Improved visual inertial odometry based on deep learning

2021 ◽  
Vol 2078 (1) ◽  
pp. 012016
Author(s):  
Jiabin Wang ◽  
Faqin Gao

Abstract The traditional visual inertial odometry according to the manually designed rules extracts key points. However, the manually designed extraction rules are easy to be affected and have poor robustness in the scene of illumination and perspective change, resulting in the decline of positioning accuracy. Deep learning methods show strong robustness in key point extraction. In order to improve the positioning accuracy of visual inertial odometer in the scene of illumination and perspective change, deep learning is introduced into the visual inertial odometer system for key point detection. The encoder part of MagicPoint network is improved by depthwise separable convolution, and then the network is trained by self-supervised method; A visual inertial odometer system based on deep learning is compose by using the trained network to replace the traditional key points detection algorithm on the basis of VINS. The key point detection network is tested on HPatches dataset, and the odometer positioning effect is evaluated on EUROC dataset. The results show that the improved visual inertial odometer based on deep learning can reduce the positioning error by more than 5% without affecting the real-time performance.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3166 ◽  
Author(s):  
Cao ◽  
Song ◽  
Song ◽  
Xiao ◽  
Peng

Lane detection is an important foundation in the development of intelligent vehicles. To address problems such as low detection accuracy of traditional methods and poor real-time performance of deep learning-based methodologies, a lane detection algorithm for intelligent vehicles in complex road conditions and dynamic environments was proposed. Firstly, converting the distorted image and using the superposition threshold algorithm for edge detection, an aerial view of the lane was obtained via region of interest extraction and inverse perspective transformation. Secondly, the random sample consensus algorithm was adopted to fit the curves of lane lines based on the third-order B-spline curve model, and fitting evaluation and curvature radius calculation were then carried out on the curve. Lastly, by using the road driving video under complex road conditions and the Tusimple dataset, simulation test experiments for lane detection algorithm were performed. The experimental results show that the average detection accuracy based on road driving video reached 98.49%, and the average processing time reached 21.5 ms. The average detection accuracy based on the Tusimple dataset reached 98.42%, and the average processing time reached 22.2 ms. Compared with traditional methods and deep learning-based methodologies, this lane detection algorithm had excellent accuracy and real-time performance, a high detection efficiency and a strong anti-interference ability. The accurate recognition rate and average processing time were significantly improved. The proposed algorithm is crucial in promoting the technological level of intelligent vehicle driving assistance and conducive to the further improvement of the driving safety of intelligent vehicles.


2019 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Tao Peng ◽  
Zhijiang Zhang ◽  
Fansheng Chen ◽  
Dan Zeng

Dimension measurement is of utmost importance in the logistics industry. This work studies a hand-held structured light vision system for boxes. This system measures dimension information through laser triangulation and deep learning using only two laser-box images from a camera and a cross-line laser projector. The structured edge maps of the boxes are detected by a novel end-to-end deep learning model based on a trimmed-holistically nested edge detection network. The precise geometry of the box is calculated by the 3D coordinates of the key points in the laser-box image through laser triangulation. An optimization method for effectively calibrating the system through the maximum likelihood estimation is then proposed. Results show that the proposed key point detection algorithm and the designed laser-vision-based visual system can locate and perform dimension measurement of measured boxes with high accuracy and reliability. The experimental outcomes show that the system is suitable for portable automatic box dimension online measurement.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4646 ◽  
Author(s):  
Jingwei Cao ◽  
Chuanxue Song ◽  
Shixin Song ◽  
Silun Peng ◽  
Da Wang ◽  
...  

Vehicle detection is an indispensable part of environmental perception technology for smart cars. Aiming at the issues that conventional vehicle detection can be easily restricted by environmental conditions and cannot have accuracy and real-time performance, this article proposes a front vehicle detection algorithm for smart car based on improved SSD model. Single shot multibox detector (SSD) is one of the current mainstream object detection frameworks based on deep learning. This work first briefly introduces the SSD network model and analyzes and summarizes its problems and shortcomings in vehicle detection. Then, targeted improvements are performed to the SSD network model, including major advancements to the basic structure of the SSD model, the use of weighted mask in network training, and enhancement to the loss function. Finally, vehicle detection experiments are carried out on the basis of the KITTI vision benchmark suite and self-made vehicle dataset to observe the algorithm performance in different complicated environments and weather conditions. The test results based on the KITTI dataset show that the mAP value reaches 92.18%, and the average processing time per frame is 15 ms. Compared with the existing deep learning-based detection methods, the proposed algorithm can obtain accuracy and real-time performance simultaneously. Meanwhile, the algorithm has excellent robustness and environmental adaptability for complicated traffic environments and anti-jamming capabilities for bad weather conditions. These factors are of great significance to ensure the accurate and efficient operation of smart cars in real traffic scenarios and are beneficial to vastly reduce the incidence of traffic accidents and fully protect people’s lives and property.


2015 ◽  
Vol 809-810 ◽  
pp. 682-687
Author(s):  
Vasile Nasui ◽  
Mihai Banica ◽  
Dinu Darabă

This paper presents the dynamic characteristics and the proposed positioning performance of the system to them investigated experimentally. In this research, we developed the positioning system and we evaluated positioning accuracy. The developed system uses a servo motor for motion actuation. In this paper, we focused on studying the dependency of the positioning error – elementary errors – the position of the conducting element for the mechanism of the transformation of the rotation translation movement, representatively the mechanism screw – screwdriver and on emphasizing the practical consequences in the field of design, regulation and exploitation of the correct identification of all the initial errors in the structure of the mechanism, their character and the selection for an ultimate calculus of these which are of a real practical importance.


2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2052
Author(s):  
Xinghai Yang ◽  
Fengjiao Wang ◽  
Zhiquan Bai ◽  
Feifei Xun ◽  
Yulin Zhang ◽  
...  

In this paper, a deep learning-based traffic state discrimination method is proposed to detect traffic congestion at urban intersections. The detection algorithm includes two parts, global speed detection and a traffic state discrimination algorithm. Firstly, the region of interest (ROI) is selected as the road intersection from the input image of the You Only Look Once (YOLO) v3 object detection algorithm for vehicle target detection. The Lucas-Kanade (LK) optical flow method is employed to calculate the vehicle speed. Then, the corresponding intersection state can be obtained based on the vehicle speed and the discrimination algorithm. The detection of the vehicle takes the position information obtained by YOLOv3 as the input of the LK optical flow algorithm and forms an optical flow vector to complete the vehicle speed detection. Experimental results show that the detection algorithm can detect the vehicle speed and traffic state discrimination method can judge the traffic state accurately, which has a strong anti-interference ability and meets the practical application requirements.


Sign in / Sign up

Export Citation Format

Share Document