scholarly journals Effect on Current Density on Zero Charge Corrosion Protection of Pure Mg in 3.5% NaCl Solution

2021 ◽  
Vol 2080 (1) ◽  
pp. 012022
Author(s):  
Mahalaksmi Gunasilan ◽  
Shaiful Rizam Shamsudin ◽  
Mohd Rafi Adzman ◽  
Siti Hawa Mohamed Salleh ◽  
Mohd Syazwan Sanusi ◽  
...  

Abstract The cathodic protection uses two-electrode polarization, which requires large currents and substantial voltages. Efforts are being made to identify possibilities for improvements by developing zero-charge corrosion protection techniques. Studies were performed to determine the zero-charges potential effect by analyzing corrosion signs on reactive metal samples such as pure Mg. Mg samples were fed by current/ voltage pulses for 120 hours, with specified pulse parameters and varied Ecorr- offsets, ranging from +2 to -218 mV. The volumetric hydrogen gas collection technique is used to determine the hydrogen evolution rate. Surface observation is carried out by stereomicroscope to determine the presence of corrosion signs on the sample surface. Overall, all current densities and hydrogen evolution rates had very low readings on the studied Ecor offset parameters. Mg samples fed with pulses at -1800 and -1900 mV vs SCE revealed zero charge potential effects since their surface was clean and showed no indications of corrosion even after being exposed to the corrosive solution for 120 hours. Thus, corrosion protection is successfully done and meets the Epzc condition.

Author(s):  
Shaiful Rizam Shamsudin ◽  
Rajaselan Wardan ◽  
Azmi Rahmat ◽  
Mohd Nazree Derman ◽  
Muhamad Syazwan Sanusi ◽  
...  

Langmuir ◽  
2011 ◽  
Vol 27 (18) ◽  
pp. 11597-11604 ◽  
Author(s):  
Andrea Salis ◽  
Mathias Boström ◽  
Luca Medda ◽  
Francesca Cugia ◽  
Brajesh Barse ◽  
...  

1985 ◽  
Vol 50 ◽  
Author(s):  
Ivars Neretnieks

AbstractIron canisters for high level nuclear waste embedded in compacted bentonite in deep geologic repositories will corrode forming hydrogen gas. The equilibrium pressure (when corrosion would stop) has been estimated to be between 500 and 1000 atm. under repository conditions. As this is much higher than the lithostatic pressure (weight of rock overburden) the gas must be allowed to escape before it disrupts the repository. Escape by diffusion alone is not sufficient but recent experiments have demonstrated that the larger pores in the bentonite are blown free of water and let the gas escape before excessive pressures build up.The potential effect of a capillary breaking layer (CBL) has been explored. A fine layer nearest the canister (e.q. quartz sand) would have much lower capillary suction pressures than the bentonite clay and would keep the water out as long as there is sufficient overpressure. As long as the CBL is void of liquid water no radionuclides can escape, even if the canister is penetrated.


2018 ◽  
Vol 47 (26) ◽  
pp. 8801-8806 ◽  
Author(s):  
Yanyu Wu ◽  
José M. Veleta ◽  
Diya Tang ◽  
Alex D. Price ◽  
Cristian E. Botez ◽  
...  

Herein, we report a crystalline CoTcPP-based [TcPP = the anion of meso-tetra(4-carboxyphenyl)porphyrin] polymeric system, 1, as a hydrogen evolution reaction (HER) electrocatalyst in acidic aqueous media.


1994 ◽  
Vol 353 ◽  
Author(s):  
Fumio Matsuda ◽  
Ryutaro Wada ◽  
Kazuo Fujiwara ◽  
Ai Fujiwara

AbstractAs a sequence of studies to evaluate the quantity of gas evolution from low/intermediate level waste repositories,hydrogen gas evoluted from corrosion of carbon steel in simulated repository environment was evaluated by laboratory experiments. The experimental results on the hydrogen gas evolution both in air purging condition simulated oxidizing environment and nitrogen purging condition simulated reducing environment, are summarized as follows.(1)Hydrogen gas evolution enough to analyze quantitavely by gas chromatography (>5ppm) has been recognized under almost all test conditions except reducing equilibrium cement water.(2)Effects of purging gas (air,nitrogen) on the hydrogen gas evolution and the corrosion rate calculated from weight loss were air purge > nitrogen purge. On the other hand, the contribution ratio of hydrogen evolution reaction in corrosion rate was nitrogen purge > air purge.(3)Effects of test solution on the hydrogen evolution rate were as fo11ows. • Air Purge :Equilibrium Bentonite Water ≈ Equilibrium Cement Water > Synthetic Sea Watert• N2 Purge:Synthetic Sea Water > Equilibrium Bentonite Water >> Equilibrium Cement Water(4)No distinct effect of crevice geometry of test specimen on hydrogen evolution rate was recognized. Only under the reducing equilibrium cement water, however, the increase of hydrogen evolution was confirmed after the immersion of several hundred hours.(5)Hydrogen evolution rates tended to decrease with testing time except in the reducing equilibrium cement water.(6)No distinct difference of hydrogen evolution rate between steels (SPHC, SPCC) was observed.


Sign in / Sign up

Export Citation Format

Share Document