zero charge
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 51)

H-INDEX

60
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Sara Kelly ◽  
Hendrik Heenen ◽  
Nitish Govindarajan ◽  
Karen Chan ◽  
Jens Nørskov

The potential of zero charge (U_PZC) is an important quantity of metal-water interfaces that are central in many electrochemical applications. In this work, we use ab initio molecular dynamics (AIMD) simulations to study a large number of (111), (100), (0001) and (211) and overlayers of transition metal-water interfaces in order to identify simple descriptors to predict their U_PZC. We find a good correlation between water coverage and the work function reduction Δφ which is defined by the difference of the work function in vacuum and in the presence of water. Furthermore, we determine the vacuum binding energies of H2O and *OH species as good descriptors for the prediction of water coverage and thereby of ∆φ. Our insights unify different facet geometries and mixed metal surfaces and thereby generalize recent observations. We further present a scheme to predict U_PZC based only on the *OH binding and the vacuum work function estimated from static DFT calculations. This formalism is applicable to all investigated metals and mixed metal surfaces including terrace and step geometries and does not require expensive AIMD simulations. To evaluate physical influences to U_PZC, we decompose ∆φ into its orientational (∆φ_orient) and electronic(∆φ_el) components. We find ∆φ_orient to be a facet dependent property and a major contributor to ∆φ on (211) surfaces, while ∆φ_sub strongly depends on the metal identity.


Author(s):  
Cintya Valerio Cárdenas ◽  
Jorge Martínez-Herrera ◽  
Diana Laura Velázquez-Vargas ◽  
Patricia De la Cruz-Burelo

Objective: To determine the optimum pH at which the pineapple peel can adsorb the greatest amount of copper. Design/methodology/approach: Sorbent material. The size of the pineapple peel was reduced to 0.250 mm; it was chemically modified with 0.2 M NaOH and 0.2 M CaCl2. Point of zero charge (PZC). Six solutions were prepared with 0.5 g of sorbent in an aqueous medium (with a 3-8 pH range), they were stirred at 225 rpm for 48 h. The derivative method was used to plot the initial pH versus final pH, in order to determine the PZC. Copper adsorption. CuSO4 solutions were prepared in 2, 4, 6, 8 10 mg/L concentrations; 0.1 g of pineapple biomass was added adjusting the pH to 5. The solutions had a contact time of 0 to 24 h. Results: The pineapple peel had a 5.0 point of zero charge (PZC) value, which indicates that pH values higher than the PZC are required to obtain an adsorbent with a negatively charged surface and favor the copper adsorption. A 50% copper removal was obtained in all concentrations after a 1 h contact time. Limitations on study/implications: This research had no limitations. Findings/conclusions: The point of zero charge is a reliable parameter that allows the adsorption process to take place and provides a greater certainty to the metal adsorption process. Meanwhile, pineapple peel can be used as an adsorbent material, consequently reducing its accumulation in open dumps.


Author(s):  
K. Sabarish ◽  
S. Paul Sebastian ◽  
M. Maheswari ◽  
P. Balasubramaniam ◽  
J. Ejilane

Hydrothermal Carbonization an emerging technology for the conversion of biomass into carbon rich materials called as hydrochar. In this study, the paper board mill ETP sludge has been used for the production of hydrochar. The characterization of point of zero charge, Heavy metals, proximate and ultimate constituents, structural morphology (SEM), and molecular surface functionalities (FTIR) were also analysed. The results of Hydrochar showed slightly acidic pH (6.40), EC (1.33), and the pHPZC (point of zero charge) of 7.8 and the heavy metals content were found to be below detectable limit. FTIR analysis revealed that, the produced hydrochar have oxygen containing functional groups (-OH, C-O-C, -C=O). SEM analysis has the morphological features such as spongy, fuzzy and fluffy porous network on surfaces. These results of hydrochar can be act as an active adsorbent with further activation.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012021
Author(s):  
Rajaselan Wardan ◽  
Shaiful Rizam Shamsudin ◽  
Thivyasai Sampasivam ◽  
Mohd Fitri Mohamad Wahid ◽  
Mohd Subhi Din Yati

Abstract The study is carried out to understand the new corrosion protection technique, non-polarization concept, using current/voltage pulses to achieve a potential of zero charges (Epzc) of the metal-solution interface. As a result, a cost-saving and ecological method has been proposed as a new anti-corrosion method. In the methodology, U-bend samples are immersed in a 3.5% NaCl solution with different pH values. The readings prove the occurrence of electrochemical reaction, absence of charges, and the effect of Epzc. An examination on the ZCCP on low-carbon steel in 3.5% NaCl solution was analyze for 120 hours days. This study is carried out to understand the concept of corrosion behaviour and a new corrosion protection technique which applies non-polarization concept. A U-bend mild steel is used to corrosion effect in various pH values under zero charge protection. Samples were then immersed in 3.5% NaCl solution with different pH values. Electrochemical behaviour of steel sample in 3.5% NaCl solution was analysed by means of Tafel extrapolation. It was found that Ecorr and icorr recorded dissimilar readings at different pH values. As Ecorr rises, icorr drops from pH 6 to pH 9, hence corrosion rate also decreases from pH 6 to pH 9. Zero charge corrosion protection (ZCCP) technique is used to study the efficiency of corrosion protection method in different pH values. Readings of alternating current (IAC) and direct voltage (VDC) are recorded throughout the ZCCP experiment. These readings prove the occurrence of electrochemical reaction, absence of charges and the effect of Epzc.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012022
Author(s):  
Mahalaksmi Gunasilan ◽  
Shaiful Rizam Shamsudin ◽  
Mohd Rafi Adzman ◽  
Siti Hawa Mohamed Salleh ◽  
Mohd Syazwan Sanusi ◽  
...  

Abstract The cathodic protection uses two-electrode polarization, which requires large currents and substantial voltages. Efforts are being made to identify possibilities for improvements by developing zero-charge corrosion protection techniques. Studies were performed to determine the zero-charges potential effect by analyzing corrosion signs on reactive metal samples such as pure Mg. Mg samples were fed by current/ voltage pulses for 120 hours, with specified pulse parameters and varied Ecorr- offsets, ranging from +2 to -218 mV. The volumetric hydrogen gas collection technique is used to determine the hydrogen evolution rate. Surface observation is carried out by stereomicroscope to determine the presence of corrosion signs on the sample surface. Overall, all current densities and hydrogen evolution rates had very low readings on the studied Ecor offset parameters. Mg samples fed with pulses at -1800 and -1900 mV vs SCE revealed zero charge potential effects since their surface was clean and showed no indications of corrosion even after being exposed to the corrosive solution for 120 hours. Thus, corrosion protection is successfully done and meets the Epzc condition.


2021 ◽  
Vol 1 (3) ◽  
pp. 200-207
Author(s):  
Victor Odiamehi Onokebhagbe ◽  
Kingsley Chinyere Uzoma ◽  
Lawal Mubarak ◽  
Auwalu Abubakar Kwalam ◽  
Habib Dahiru Wakili

This study was aimed to know the effects of biochar on charge properties of an Alfisol and Vertisol of semi-arid soils of Northern Nigeria. A laboratory experiment was conducted to determine the effects of biochar on point zero charge of soils. Experiment was laid out in a complete randomized design and consisted of two factors; 2 soil types and biochar at 4 levels giving a total of 8 treatment combinations with 3 replications each.The results obtained from the study showed that the pH in KCl of the incubated soils ranged from 7.3 to 7.4 and 7.6 to 7.9 for the Alfisol and Vertisol; 7.5 to 7.7 and 7.9 to 8.3 pH in H2O, was obtained for the Alfisol and Vertisol respectively. Electrical conductivity obtained ranged from 3.22 to 4.72 and 2.88 to 4.21 dS m-1 for Alfisol and Vertisol respectively. Electrical potentials ranged from -19.70 to -35 and -31.45 to -63.04 for the Alfisol and Vertisol respectively. The Point Zero Charge of soils correlated positively with the properties of the soils and the biochar rates.The addition of biochar to soils modified the PZC, increased the pH, electrical conductivity (ECe) and cation exchange capacity (CEC) of the soils.


2021 ◽  
Vol MA2021-02 (54) ◽  
pp. 1937-1937
Author(s):  
Maksim Bahdanchyk ◽  
Zahide Tuğba Sarı ◽  
Antonello Vicenzo

2021 ◽  
Author(s):  
Mumuni Amadu ◽  
Adango Midanoye

Abstract In colloidal science and bioelectrostatics, the linear Poisson Boltzmann Equation (LPBE) has been used extensively for the calculation of potential and surface charge density. Its fundamental assumption rests on the premises of low surface potential. In the geological sequestration of carbon dioxide in saline aquifers, very low pH conditions coupled with adsorption induced reduction of surface charge density result in low pH conditions that fit into the LPB theory. In this work, the Gouy-Chapman model of the electrical double layer has been employed in addition to the LPBE theory to develop a contact angle model that is a second-degree polynomial in pH. Our model contains the point of zero charge pH of solid surface. To render the model applicable to heterogeneous surfaces, we have further developed a model for the effective value of the point of zero charge pH. The point of zero charge pH model when integrated into our model enabled us to determine the point of zero charge pH of sandstone, quartz and mica using literature based experimental data. In this regard, a literature based thermodynamic model was used to calculate carbon dioxide solubility and pH of aqueous solution. Values of point of zero charge pH determined in this paper agree with reported ones. The novelty of our work stems from the fact that we have used the LPB theory in the context of interfacial science completely different from the classical approach, where the focus is on interparticle electrostatics involving colloidal stabilization.


Sign in / Sign up

Export Citation Format

Share Document