scholarly journals Magnetic-Electric Behaviors and Physical Properties of The Thin Films on ITO-Glass Substrate

2021 ◽  
Vol 2083 (2) ◽  
pp. 022070
Author(s):  
Xiaofen Liu ◽  
Xiujuan Wang ◽  
Zirui Zhang ◽  
Jin Cao

Abstract Polycrystalline BiFeO3 thin films on ITO glass substrates were prepared by radio frequency magnetron sputtering using a Bi1.1FeO3 target. The samples which were annealed with different annealing conditions are pure without impurities. We measured the magnetic properties and ferroelectricity of the BiFeO3 films. The measurement results show that the magnetic and electrical properties of the BiFeO3 films are significantly different under different annealing conditions.

1998 ◽  
Vol 13 (5) ◽  
pp. 1266-1270 ◽  
Author(s):  
Ai-Li Ding ◽  
Wei-Gen Luo ◽  
P. S. Qiu ◽  
J. W. Feng ◽  
R. T. Zhang

PLT(28) thin films deposited on glass substrates were studied by two sputtering processes. One is an in situ magnetron sputtering and the other is a low-temperature magnetron sputtering. The sintered PLT ceramic powders are used as a sputtering target for both processes. The influences of sputtering and annealing conditions on structure and crystallinity of the films were investigated. The electro-optic (E-O) properties of PLT(28) thin films prepared by the two processes were determined by a technique according to Faraday effect. The researches showed the E-O properties were strongly affected by the sputtering process. The film with larger grains exhibits stronger E-O effect. The quadratic E-O coefficient of PLT(28) thin film varies in the range of 0.1 × 10−16 to 1.0 × 10−16 (m/v)2.


2021 ◽  
Author(s):  
J. Koaib ◽  
N. Bouguila ◽  
M. Kraini ◽  
I. Halidou ◽  
K. Khirouni ◽  
...  

Abstract In2S3 thin films were grown on indium tin oxide (ITO) glass substrate by chemical spray pyrolysis technique at 360°C. The structural analysis of the deposited films shows a combination of tetragonal and cubic structures. The average crystallite size is about 25 nm. The electrical properties of In2S3 thin films have been investigated in a wide frequency (40Hz-100MHz) and temperature (400 K-660 K) ranges.We find that the electrical conductance of the In2S3 thin films is frequency and temperature dependent. The dc conductance shows a semi-conductor behavior for In2S3 films over the explored range of temperature and it follows the Arrhenius law with different activation energies. The variation of ac conductance and the frequency exponent `s’ are explained by the correlated barrier hopping (CBH) model. The Nyquist plots of impedance exhibit semicircle arcs and an electrical equivalent circuit has been suggested to interpret the impedance results.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


2020 ◽  
Vol 705 ◽  
pp. 137971
Author(s):  
C. Pulzara-Mora ◽  
A. Pulzara-Mora ◽  
A. Forero-Pico ◽  
M. Ayerbe-Samaca ◽  
J. Marqués-Marchán ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document