scholarly journals Study on Spinning Process Parameters of the Copper Bushing by Tribological Properties and Physical Testing

2021 ◽  
Vol 2083 (2) ◽  
pp. 022084
Author(s):  
Xiaolu Hong ◽  
Hengqiu Xu ◽  
Ying Xu ◽  
Tao Huang ◽  
Yaming Guo ◽  
...  

Abstract The bushing is a kind of ring sleeve which acts as a liner outside the mechanical parts, which needs good strength, hardness and fatigue resistance. In this paper, the copper bushing was prepared by spinning forming method, and the process parameters of spinning were explored. According to the results of material thermal simulation and test, the conclusion is that the spinning process of copper bushing needs to be carried out in two passes by reverse spinning method. The thinning rate is 30% and 25% respectively. The gap between the mandrel and the roller is 10mm, the feed ratio is 1mm/r, and the spinning temperature is 250°C.

2021 ◽  
Vol 1035 ◽  
pp. 152-160
Author(s):  
Hai Bao Wu ◽  
Fu Long Chen ◽  
De Gui Liu ◽  
Ji Zhen Li ◽  
Jian Fei Wang

Spinning forming is an effective method for processing thin-walled rotating body parts. The influence of process parameters on the spinning forming limit of materials was studied for the four high-temperature alloys of GH3044, GH3625, GH3536 and GH4169 used in aero-engines. The results can be used as aero-engine high-temperature alloy parts spinning process and provides experimental basis and process guidance. The research results showed that the forming temperature had a significant effect on the spinning forming performance of superalloy materials. When the temperature increased to 800°C and above, the ultimate thinning rate raised 70%. The ultimate thinning rate of GH4169 was higher than the other three materials and GH3044 and GH3536 was at the middle level, GH3625 was relatively low. At the same time, the feed ratio and the corner radius of the rotary wheel had a certain influence on the ultimate thinning rate of different superalloys. The spinning process needs to select reasonable process parameters according to the actual situation when the spinning is applied to manufacture parts.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Youmin Wang ◽  
Zhaozhe Zhu ◽  
Lingfeng Tang ◽  
Qinshuai Jiang

In order to put forward the theoretical calculation formula for the compression force of the compression mold of the trunk trim panel, obtain the influence trend of the process parameters on the molding quality of the trunk trim panel, and obtain the optimal process parameters combination for the compression molding of the trunk trim panel, four process parameters, the heating temperature, time, compression pressure, and holding time, which affected the compression molding, were selected as the level factors; the maximum thinning rate, maximum thickening rate, and shrinkage rate of the trunk trim panel were selected as evaluation indicators and orthogonal experiments were designed and completed; the comprehensive weighted scoring method was used to obtain the comprehensive score results and obtain the comprehensive evaluation indicators of the best combination of process parameters of trunk trim panel; BP neural network and genetic algorithm were used to study the change trend of the evaluation indicators of trunk trim panel with the changes of process parameters; based on the optimal process parameter combination and the established neural network’s prediction function, the maximum thinning rate, maximum thickening rate, and shrinkage rate under a single process parameter change could be predicted, and the influence of a single process parameter on the maximum thinning rate, maximum thickening rate, and shrinkage rate could be obtained; the process parameters were optimized, and a maximum thinning rate of 28%, a maximum thickening rate of 4.3%, and a shrinkage rate of 0.8% were obtained; the optimal molding process parameters of the trunk trim panel were heating temperature of 209°C, heating time of 62 s, molding pressure of 14 kPa, and holding pressure time of 49 s; after optimization, the maximum shrinkage rate was 28.0880%, the maximum thickening rate was 44.3264%, and the shrinkage rate was 0.8901%; according to the optimal process parameters, the quality of the trunk trim panel was very good, which met the production quality requirements.


2007 ◽  
Vol 26-28 ◽  
pp. 289-292
Author(s):  
Abu Bakar Sulong ◽  
Joo Hyuk Park

Optimization process for fabrication of Carbon nanotubes (CNTs) reinforced Polyethylene (PE) fibers by melt spinning has been studied. Three main melt spinning process parameters (spinning temperature, spinning distance, and spinning revolution) are evaluated by the Taguchi’s method to decrease the diameter of fibers. Decreasing diameter of fibers is greater influenced by spinning revolution and distance than spinning temperature. Moreover, fibers in diameter 22 μm (average) are successfully fabricated. Mechanical properties are measured by tensile test machine based on ASTM D3822 for single fibers which were fabricated at optimized melt spinning process parameters. Pure PE polymer fibers and chemically surface modified CNTs reinforced fibers also fabricated for comparison purpose. The interfacial bonding of CNTs with PE matrix is investigated through fracture surfaces image analysis by Scanning Electron Microscopy (SEM).


2012 ◽  
Vol 160 ◽  
pp. 97-102 ◽  
Author(s):  
Dong Han ◽  
He Yang ◽  
Mei Zhan ◽  
Ming Yang Yang ◽  
Shao Zheng Mou ◽  
...  

In order to improve the limits of wall thickness reduction of 30CrMnSiA steel in process of spinning, realize multi-pass continuous spinning process, and furthermore improve the forming efficiency and shape accuracy of thin-walled shell of 30CrMnSiA steel in spinning process, the influence of traditional annealing and austenization plus spheroidal annealing on the structure performance of 30CrMnSiA steel and the spun performance of 30CrMnSiA steel are studied. Process parameters of traditional anneal and austenize plus spheroidal annealing are optimized to obtain higher plastic performance and lower ratio of yield strength to tensile strength. Spinning experiments of the workpieces that have been heattreated by the optimized traditional annealing process and austenization plus spheroidal process are completed. The result shows that the optimized austenization plus spheroidal annealing is beneficial to achieve a large thinning rate for flow spinning process, and can meet the demands of low cost and high efficiency of batch production.


Author(s):  
A. Arunmani ◽  
T. Senthilkumar

In engineering industries and heavy manufacturing plants, fatigue life of joints plays a pivotal role in determining the overall life span of the welded joint. In this paper, an advanced fusion joining technique, namely activated tungsten inert gas welding, was used for joining UNS S32750 super duplex stainless steel, with ZnO as activation flux. For the enhancement of fatigue resistance of joints, important welding process parameters were fluctuated according to a developed central composite design model. Empirical relationships were developed between the process parameters and the fatigue strength of the joints, which was correlated with the number of cycles to failure (NCF). Using analysis of variance, the significance of the developed fatigue model was ascertained. Using response surface methodology, optimization of process parameters for enhancement of fatigue resistance was done. It was observed that at the optimized activated tungsten inert gas weld process parameters of travel speed of welding torch at 69.85 mm/min, weld current at 125.20 A, and shielding gas flow rate at 14.77 L/min, a high fatigue life of 7.66396 × 108 NCF was obtained and the model was validated to very high predictability. Microstructural variations in the fatigue-tested specimens were evaluated for identifying the grain modifications.


2016 ◽  
Vol 11 (4) ◽  
pp. 155892501601100
Author(s):  
Rui-Hua Yang ◽  
Chao Liu ◽  
Yuan Xue ◽  
Hongbo Wang ◽  
Weidong Gao

Rotor spinning is known for high production rates and uniformity of the resulting yarn. However, determining machine components which will produce the optimum process parameters such as airflow speed to result in the best combinations of yarn quality and uniformity can be a difficult task. The aim of this study is to simulate and analyze the airflow characteristics in rotors with U and V grooves during the rotor spinning process. The results obtained showed that airflow speed resulting from a rotor with the V groove is higher than that of U type. As a result, the static pressure resulting from the use of the V type groove is lower than that of U groove.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2052 ◽  
Author(s):  
Liang Wei ◽  
Chengkun Liu ◽  
Xue Mao ◽  
Jie Dong ◽  
Wei Fan ◽  
...  

There is a great limitation to improving the quality and productivity of nanofibers through the conventional single-needle method. Using needleless electrospinning technology to generate multiple jets and enhance the productivity of nanofibers has attracted lots of interest for many years. This study develops a novel linear flume spinneret to fabricate nanofibers. Multiple jets with two rows can be formed simultaneously on the surface of the spinneret. The solution concentration has a significant impact on the average nanofiber diameter compared with applied voltage and collection distance. The effects of different spinning process parameters on the productivity of nanofibers are investigated. High-quality nanofibers with small nanofiber diameter and error can be fabricated successfully. The average nanofiber diameter is 108 ± 26 nm. The average error is 24%. The productivity of nanofibers can reach 4.85 ± 0.36 g/h, which is about 24 times more than that of the single-needle method. This novel linear flume spinneret needleless electrospinning technology exhibits huge potential for mass production of nanofibers in the field of industrialization.


Sign in / Sign up

Export Citation Format

Share Document