scholarly journals Fiber Optic Attenuator

2021 ◽  
Vol 2086 (1) ◽  
pp. 012128
Author(s):  
D P Andreev ◽  
E I Andreeva

Abstract A study of a bending-type fiber-optic attenuator has been carried out. It is shown that the use of G.655 - optical fiber provides the largest dynamic range of the attenuator. The spectral dependence of the bending losses was measured in a wide range of wavelengths: from 1270 to 1610 nm.

2013 ◽  
Vol 303-306 ◽  
pp. 55-58
Author(s):  
Cheng Long Liu ◽  
Zi Nan Wang ◽  
Qian Qian Cheng ◽  
Hayrigul Osman ◽  
Chao Peng ◽  
...  

We propose and demonstrate an optical fiber acoustic sensor based on air backing mandrel type fiber optic hydrophone. This novel approach to sensing sounds in the air has not been utilized before and has the advantage that the sensor doesn’t need electric power supply when it is working. To prove the feasibility of such an optical fiber acoustic sensor, we make a model and set up experiment to get the acoustic waves response curve in frequency. Because of its simple mechanical structure, the sensor is robust and shows a good application prospect.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jinlei Zhao ◽  
Tengfei Bao ◽  
Tribikram Kundu

A wide range fiber optic sensor system for displacement and crack monitoring is developed. In the proposed fiber optic sensor system, a number of fiber loops are formed from a single fiber and each fiber loop is used as a crack or displacement sensor. The feasibility and the dynamic range of the fiber sensor developed in this manner are investigated experimentally. Both glass fibers and plastic fibers are used in the experiments. Experimental results show that the new fiber optic sensor has a wide range (maximum range is 88 mm) and this sensor also has a high sensitivity for displacement and crack monitoring when an appropriate diameter of the fiber loop is selected as the sensor. Moreover, the proposed method is very simple and has low cost, so in situ application potential of the proposed sensor is high.


2013 ◽  
Vol 860-863 ◽  
pp. 1388-1393
Author(s):  
Guo Chang Zhao ◽  
Xian Yi Tong ◽  
Li Ping Song ◽  
Chun Lei Zhao ◽  
Guang Chao Li ◽  
...  

Accurate temperature measurement needs in both research and industry have become more demanding and traditional temperature measurement technologies are struggling to keep up. Optical fiber thermometers have many unique advantages and are an option with much potential in the area of high temperature measurement. Research shows that fiber optic temperature sensors are capable of making accurate and precise measurements in a wide range of harsh conditions where other measurement technologies cannot and are a cost effective option in situations where traditional measurement technologies are currently used. Several typical high temperature fiber optic sensors are discussed in detail, focusing on the principle of operation, advantageous characteristics, and recent research developments, with the aim of aiding in further work with fiber optic thermometers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


Author(s):  
Masaki Michihata ◽  
Zhao Zheng ◽  
Daiki Funaiwa ◽  
Sojiro Murakami ◽  
Shotaro Kadoya ◽  
...  

AbstractIn this paper, we propose an in-process measurement method of the diameter of micro-optical fiber such as a tapered optical fiber. The proposed technique is based on analyzing optically scattered light generated by standing wave illumination. The proposed method is significant in that it requires an only limited measurement range and does not require a high dynamic range sensor. These properties are suitable for in-process measurement. This experiment verified that the proposed method could measure a fiber diameter as stable as ± 0.01 μm under an air turbulence environment. As a result of comparing the measured diameter distribution with those by scanning electron microscopy, it was confirmed that the proposed method has a measurement accuracy better than several hundred nanometers.


1987 ◽  
Vol 121 ◽  
pp. 287-293
Author(s):  
C.J. Schalinski ◽  
P. Biermann ◽  
A. Eckart ◽  
K.J. Johnston ◽  
T.Ph. Krichbaum ◽  
...  

A complete sample of 13 flat spectrum radio sources is investigated over a wide range of frequencies and spatial resolutions. SSC-calculations lead to the prediction of bulk relativistic motion in all sources. So far 6 out of 7 sources observed with sufficient dynamic range by means of VLBI show evidence for apparent superluminal motion.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


Sign in / Sign up

Export Citation Format

Share Document