scholarly journals RAD_IQ: A free software for characterization of digital X-ray imaging devices based on the novel IEC 62220-1-1:2015 International Standard

2021 ◽  
Vol 2090 (1) ◽  
pp. 012107
Author(s):  
A Konstantinidis ◽  
N Martini ◽  
V Koukou ◽  
G Fountos ◽  
N Kalyvas ◽  
...  

Abstract Characterization of digital X-ray imaging devices is very important because it can be used to measure and compare the performance of detectors used in Diagnostic Radiology. This characterization is usually made through the calculation of Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). These parameters, especially the DQE, are very important because they quantify the effect of spatial resolution, contrast and noise on Radiographic image quality (IQ). The IEC 62220-1-1:2015 International Standard provides comprehensive guidelines how to capture and analyze X-ray images to characterize digital X-ray detectors. A novel, fast and free MATLAB-based software was developed, named RAD_IQ, to calculate the Signal Transfer Property (STP), perform Noise Component Analysis (NCA), and calculate the parameters MTF, NPS & DQE of X-ray detectors based on the novel IEC 62220-1-1:2015 International Standard for General Radiography and IEC 62220-1-1:2007 for Digital Mammography. Our results were validated against well-established software products used for quantitative image analysis of digital X-ray detectors. The calculated parameters were within 5% difference compared to available software products. The conclusion of our study was that RAD_IQ can be easily used from Medical Physicists, Biomedical Engineers and researchers without any programming experience to characterize the performance of digital X-ray detectors used in Diagnostic Radiology.

2004 ◽  
Author(s):  
Santosh V. Vadawale ◽  
Jae Sub Hong ◽  
Jonathan E. Grindlay ◽  
Peter Williams ◽  
Minhua Zhang ◽  
...  

1981 ◽  
Vol 219 (2) ◽  
pp. C23-C25 ◽  
Author(s):  
Gianfranco Ciani ◽  
Giuseppe D'Alfonso ◽  
Maria Freni ◽  
Pierfrancesco Romiti ◽  
Angelo Sironi
Keyword(s):  

2018 ◽  
Vol 89 (10) ◽  
pp. 10G124 ◽  
Author(s):  
C. Stoeckl ◽  
T. Filkins ◽  
R. Jungquist ◽  
C. Mileham ◽  
N. R. Pereira ◽  
...  
Keyword(s):  
X Ray ◽  

2019 ◽  
Vol 66 (1) ◽  
pp. 518-523
Author(s):  
Madan Niraula ◽  
Kazuhito Yasuda ◽  
Shintaro Tsubota ◽  
Taiki Yamaguchi ◽  
Junya Ozawa ◽  
...  

Author(s):  
A Zachary Trimble ◽  
Brennan Yammamoto ◽  
Jingjing Li

The expanding use of materials that are difficult to join with traditional techniques drives an urgent need, in a wide array of industries, to develop and characterize production capable joining processes. Friction stir blind riveting (FSBR) is such a process. However, full adoption of FSBR requires more complete characterization of the process. The relatively inexpensive, portable FSBR machine discussed here facilitates in situ X-ray imaging of the FSBR process, which will enhance the ability of researchers to understand and improve the FSBR process. Real-time, unobstructed, angular X-ray access drives the functional requirements and design considerations of the machine. The acute angular access provided by the machine necessitates tradeoffs in stiffness and Abbe errors. An error budget quantifies the effect of the various trade-offs on likely sensitive directions and relationships. Additionally, the machine motivates more test parameters important to machine designers (e.g., parallelism and runout) that have not yet been explored in the literature. Ultimately, a machine has been developed, which has a single rotational axis that translates parallel to the rotational axis, can be built for under $12,000, has a mass of less than 110 kg, measures 915 mm × 254 mm × 624 mm, has a rotational speed range of 400–8000 RPM, has a feed rate range of 0.1–200 mm/min, can be installed on most test benches, has total rivet runout of 0.1 mm, has plunge and rotational axis parallelism of less than 0.1 deg, and has a plunge axis repeatability of better than 2  μ m over a 10 mm range.


2012 ◽  
Vol 465 ◽  
pp. 76-79 ◽  
Author(s):  
Shuang Zhan ◽  
Xia Li

The novel Y2O3 nanoflowers were synthesized through a facile hydrothermal method without using any catalyst or template. The phase composition and the microstructure of as-prepared products were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) as well as Fourier transform infrared spectrum. The formation mechanism for the Y2O3 flowers has been proposed.


2014 ◽  
Vol 9 (05) ◽  
pp. C05017-C05017 ◽  
Author(s):  
C Ponchut ◽  
M Ruat ◽  
J Kalliopuska

Sign in / Sign up

Export Citation Format

Share Document