scholarly journals Study on the Mechanical Characteristics of the Screw Driving Torque during the Emptying of the Shield Soil Bin

2021 ◽  
Vol 2101 (1) ◽  
pp. 012004
Author(s):  
Xingchun Li ◽  
Yi Yang ◽  
Xinggao Li ◽  
Weilin Su ◽  
Zhi Liu ◽  
...  

Abstract This article studies the changing law of the driving torque of the screw conveyor during the emptying process of the earth pressure balance shield chamber. First, the discrete element method of discrete medium theory and 3D software SolidWorks were used to create the research object and the screw conveyor model, and then the model parameters were determined and calibrated through numerical calculations and indoor experiments. The final numerical calculation results show that: 1) the screw torque will drop in waves with the increase of the calculation time. When the screw conveyor rotates at 360 deg/s, the calculated screw torque fluctuation amplitude is small; 2) when the number of particles in the soil bin is reduced to a certain extent, the use of a higher screw speed to improve the “dumping soil effect” is of little significance; 3) the negative exponential function can be used to better fit the decrease of screw torque with time; 4) for the bulk medium, for a given particle size and screw structure, there is a suitable speed, so that the effect of “machine-soil collision” is small, and the torque change of the screw is relatively stable.

2018 ◽  
Vol 52 (1-2) ◽  
pp. 3-10 ◽  
Author(s):  
Xuanyu Liu ◽  
Kaiju Zhang

Background: Earth pressure balance shield machines are widely used in underground engineering. To prevent ground deformation even disastrous accidents, the earth pressure in soil chamber must be kept balance to that on excavation face during shield tunneling. Therefore, in this paper an advanced control strategy that a least squares support vector machine model-based predictive control scheme for earth pressure balance is developed. Methods: A prediction model is established to predict the earth pressure in chamber during the tunneling process by means of least squares support vector machine technology. On this basis, an optimization function is given which aims at minimizing the difference between the predicted earth pressure and the desired one. To obtain the optimal control actions, an improved ant colony system algorithm is used as rolling optimization for earth pressure balance control in real time. Results: Based on the field data the simulation experiments are performed. The results demonstrate that the method proposed is very effective to control earth pressure balance, and it has good stability. Conclusion: The screw conveyor speed and advance speed are the major factors affecting the earth pressure in chamber. The excavation face could be controlled balance better by adjusting the screw conveyor speed and advance speed.


2011 ◽  
Vol 255-260 ◽  
pp. 3282-3286
Author(s):  
Xiu Shan Wang ◽  
Li Wang ◽  
Xiao Jun Ding

The method to analysis the strength of planetary trains’ carriers of EPB(earth pressure balance) shield machine is presented in this paper. The structure of the shield machine trains is analyzed and the 3-D solid model of the carrier is built with Pro/E. After the load on the carrier has been dealt with, the strength of carrier is calculated by means of finite element method. The results via ANSYS show that the max stress and strain on the carriers are increasing as the increasing load on it. The max stress is lying on the joint point of the carrier and planetary gear shaft because of the bending deformation of the shaft.


1998 ◽  
Vol 35 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Chang-Yu Ou ◽  
Richard N Hwang ◽  
Wei-Jung Lai

This paper presents the surface settlement performance induced by the foamed type of earth pressure balance shield in contract CH218 of the Hsintien Line of the Taipei Rapid Transit System. The surface settlement characteristics caused by the single tunnel and by twin tunnels with reference to two sections spaced at 87 m are studied. Field observations indicate that the surface settlement trough due to the single tunnel can be represented by the normal distribution. The distance of the inflection point to the tunnel center and maximum surface settlement value are consistent with those found in the literature. The characteristics of the surface settlement trough are related to the type of the soil, particularly where the crown of the tunnel is located in a layered soil deposit. The ground surface settlement induced by twin tunnels was found to be larger than estimated using the principle of superposition.Key words: shield tunnelling, surface settlement, field observation.


2011 ◽  
Vol 378-379 ◽  
pp. 449-452
Author(s):  
Xue Gang Huang ◽  
Yu You Yang ◽  
Gui He Wang

A three-dimensional (3D) failure mechanism, based on the framework of the kinematical approach of limit analysis theory, is applied to calculate the face supporting pressure of a circular tunnel driven by the Earth Pressure Balance Shield (EPBS). The geometry of the mechanisms considered is composed of a sequence of truncated rigid cones. The numerical results obtained are presented.


2020 ◽  
Vol 42 (13) ◽  
pp. 2440-2449
Author(s):  
Xuanyu Liu ◽  
Sheng Xu ◽  
Kaiju Zhang

In order to avoid the safety accidents caused by earth pressure imbalance during shield machine tunneling process, the earth pressure between excavation face and that in chamber must be maintained balance, but it is difficult for practical engineering. Therefore, a data-driven multi-variable optimization method based on dual heuristic programming (DHP) is proposed. First, a cost function with respect to the chamber’s earth pressure is given in light of Bellman’s principle. Then, based on back propagation neural networks (BPNN), the action network, model network and critic network are established that compose the DHP controller. The networks’ weights are updated through the gradient descent algorithm. By minimizing the cost function, the action network utilizes the critic network’s error to optimize the control variables, so that the optimal advance speed, cutter head torque, cutter head speed, total thrust and screw conveyor speed are obtained. Finally, the simulation experiments are carried out, and the results indicate that the method can effectively control the earth pressure balance in chamber and has strong anti-interference ability.


2012 ◽  
Vol 490-495 ◽  
pp. 2748-2751
Author(s):  
Li Zhi Wen ◽  
Zhi Wei Guan ◽  
Chen Fu Liu ◽  
Xi Tong Zhang

The method to analysis the strength of planetary trains’ carriers of EPB(earth pressure balance) shield machine is presented in this paper. The structure of the shield machine trains is analyzed and the 3-D solid model of the carrier is built with Pro/E. After the load on the carrier has been dealt with, the strength of carrier is calculated by means of finite element method. The results via ANSYS show that the max stress and strain on the carriers are increasing as the increasing load on it. The max stress is lying on the joint point of the carrier and planetary gear shaft because of the bending deformation of the shaft


Sign in / Sign up

Export Citation Format

Share Document