scholarly journals Effect of Temperature on Tensile Curve of Polyaspartic Ester Polyurea and Its Activation Energy Analysis

2021 ◽  
Vol 2101 (1) ◽  
pp. 012061
Author(s):  
Jian Zhang ◽  
Junxue Zhai ◽  
Xijuan Zhao ◽  
Jinjian Lin ◽  
Qingguo Wang ◽  
...  

Abstract The influence of ambient temperature on the tensile stress-strain curve of polyaspartic ester polyurea (PAE-PU) was investigated to discuss the yield and breakage mechanism of tensile deformation. Temperature has a significant effect on the tensile stress-strain curve of PAE-PU. At low temperature (27, 40 °C), it shows obvious yield and forced high elasticity. After the temperature exceeds 80 °C, the yield phenomenon disappears and shows high elasticity of rubber: the strain energy and breakage energy are significantly reduced. The yield activation energy of PAE-PU was calculated by yield strain time at different temperatures. It was found that the yield activation energy decreased with the increase of tensile rate. When the tensile rate is 500mm/min, among the activation energies calculated by breakage strength, yield strength and Young’s modulus at different temperatures, the ordinary elastic deformation activation energy is higher, while the yield and breakage activation energy are close and lower. The latter two are close to the hydrogen bond energy and one order of magnitude lower than the chemical bond energy of molecular chain.

2018 ◽  
Vol 6 (1) ◽  
pp. 015304
Author(s):  
H S da Costa Mattos ◽  
J F S Brandão ◽  
F C Amorim ◽  
P V S Araújo ◽  
J M L Reis

2004 ◽  
pp. 13-31

Abstract This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion on the parameters that are used to describe the engineering stress-strain curve of a metal, namely, tensile strength, yield strength or yield point, percent elongation, and reduction in area. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. Next, it reviews the effect of strain rate and temperature on the stress-strain curve. The chapter then describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.


2020 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Hua Qian Ang

The tensile deformation behaviour of magnesium alloy AE44 (Mg-4Al-4RE) under strain rates ranging from 10-6 to 10-1 s-1 has been investigated. Present study shows that the deformation mode begins with the activation of elastic (Stage 1), followed by <a> basal slip and twinning (Stage 2), <a> prismatic slip (Stage 3) and finally to <c+a> pyramidal slip (Stage 4). The commencement of these deformation mechanisms results in four distinct stages of strain hardening in the stress-strain curve. In this work, the four stages of deformation behaviour are modelled, and an empirical equation is proposed to predict the entire stress-strain curve. Overall, the model predictions are in good agreement with the experimental data. This study on the decomposition of stress-strain curve into four stages provides insights into the contribution of individual deformation mechanism to the overall deformation behaviour and opens a new way to assess mechanical properties of die-cast magnesium alloys.


Sign in / Sign up

Export Citation Format

Share Document