scholarly journals Hybrid SARIMA-FFNN model in forecasting cash outflow and inflow

2021 ◽  
Vol 2106 (1) ◽  
pp. 012002
Author(s):  
M Monica ◽  
A Suharsono ◽  
B W Otok ◽  
A Wibisono

Abstract The monthly inflow and outflow of money from an area is one of the important concerns in the economic life of a region. This study aims to model and predict the monthly cash inflow and outflow of Kediri, East Java Province, Indonesia using the Hybrid Seasonal Autoregressive Integrated Moving Average – Feedforward Neural Network (SARIMA-FFNN) model. Seasonal time series data from monthly cash inflow and outflow of Kediri are used to test the forecasting accuracy of the proposed hybrid model. First, both variables are modeled using the SARIMA model. Then, non-linearity testing was carried out on the best SARIMA model for each variable and the results showed that only cash inflow was non-linear. Therefore, only cash inflow could be continued with the FFNN model. The best selected model was the FFNN model with the input SARIMA(0,0,0)(1,0,0)12 with five hidden layers. The input of FFNN modeling was based on the best SARIMA model with only the autoregressive order which for non-seasonal and seasonal. The sum of hidden layers was chosen by the smallest values of MAPE and RMSE. Forecasting results with the hybrid SARIMA-FFNN model on data testing followed the actual data pattern.

2019 ◽  
Vol 9 (20) ◽  
pp. 4386 ◽  
Author(s):  
Hongyan Jiang ◽  
Dianjun Fang ◽  
Klaus Spicher ◽  
Feng Cheng ◽  
Boxing Li

A period-sequential index algorithm with sigma-pi neural network technology, which is called the (SPNN-PSI) method, is proposed for the prediction of time series datasets. Using the SPNN-PSI method, the cumulative electricity output (CEO) dataset, Volkswagen sales (VS) dataset, and electric motors exports (EME) dataset are tested. The results show that, in contrast to the moving average (MA), exponential smoothing (ES), and autoregressive integrated moving average (ARIMA) methods, the proposed SPNN-PSI method shows satisfactory forecasting quality due to lower error, and is more suitable for the prediction of time series datasets. It is also concluded that: There is a trend that the higher the correlation coefficient value of the reference historical datasets, the higher the prediction quality of SPNN-PSI method, and a higher value (>0.4) of correlation coefficient for SPNN-PSI method can help to improve occurrence probability of higher forecasting accuracy, and produce more accurate forecasts for the big datasets.


2018 ◽  
Vol 12 (11) ◽  
pp. 181 ◽  
Author(s):  
S. AL Wadi ◽  
Mohammad Almasarweh ◽  
Ahmed Atallah Alsaraireh

Closed price forecasting plays a main rule in finance and economics which has encouraged the researchers to introduce a fit model in forecasting accuracy. The autoregressive integrated moving average (ARIMA) model has developed and implemented in many applications. Therefore, in this article the researchers utilize ARIMA model in predicting the closed time series data which have been collected from Amman Stock Exchange (ASE) from Jan. 2010 to Jan. 2018. As a result this article shows that the ARIMA model has significant results for short-term prediction. Therefore, these results will be helpful for the investments.


2018 ◽  
Vol 9 (1) ◽  
pp. 171-180
Author(s):  
I Gede Sanica ◽  
I Ketut Nurcita ◽  
I Made Mastra ◽  
Desak Made Sukarnasih

AbstractThis study aims to analyze effectivity and forecast of interest rate BI 7-Day Repo Rate as policy reference in the implementation of monetary policy. The method was used in this study contains Vector Autoregression (VAR) to estimate effectivity of BI 7-Day Repo Rate and Autoregressive Integrated Moving Average (ARIMA) to forecast of BI 7-Day Repo Rate. Period of observation in this study used time series data during 2016.4 until 2017.6. The result of this research shows that the transformation of the BI Rate to BI 7-Day Repo Rate is the right step in the monetary policy operation in the effort to reach deepening of the financial market and strengthen the interbank money market structure so that it will decrease loan interest rate and encourage credit growth. The effectiveness of the use of BI 7 Day-Repo Rate on price stability is indicated by the positive relationship between the benchmark interest rate and inflation compared to the BI Rate. The impact of BI 7-Day Repo Rate on economic growth that tends to be positive. Forecasting the use of BI 7-Day Repo Rate shows good results with declining value levels, so this will encourage deepening the financial markets.


2018 ◽  
Vol 2 (2) ◽  
pp. 49-57
Author(s):  
Dwi Yulianti ◽  
I Made Sumertajaya ◽  
Itasia Dina Sulvianti

Generalized space time autoregressive integrated  moving average (GSTARIMA) model is a time series model of multiple variables with spatial and time linkages (space time). GSTARIMA model is an extension of the space time autoregressive integrated moving average (STARIMA) model with the assumption that each location has unique model parameters, thus GSTARIMA model is more flexible than STARIMA model. The purposes of this research are to determine the best model and predict the time series data of rice price on all provincial capitals of Sumatra island using GSTARIMA model. This research used weekly data of rice price on all provincial capitals of Sumatra island from January 2010 to December 2017. The spatial weights used in this research are the inverse distance and queen contiguity. The modeling result shows that the best model is GSTARIMA (1,1,0) with queen contiguity weighted matrix and has the smallest MAPE value of 1.17817 %.


2019 ◽  
Vol 13 (3) ◽  
pp. 135-144
Author(s):  
Sasmita Hayoto ◽  
Yopi Andry Lesnussa ◽  
Henry W. M. Patty ◽  
Ronald John Djami

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.


Sutet ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 93-101
Author(s):  
Redaksi Tim Jurnal

Forecasting. Plans, power plants ,. Electricity needs are increasingly changing daily, so the State Electricity Company (PLN) as a provider of energy must be able to predict daily electricity needs. Short-term forecasting is the prediction of electricity demand for a certain period of time ranging from a few minutes to a week ahead. in shortterm electrical forecasting much of the literature describes the techniques and methods applied in forecasting, Autoregresive Integrated Moving Average (ARIMA), linear regression, and artificial intelligence such as Artificial Neural Networks and fuzzy logic. Short-term forecasting will be done by the authors using time series data that is the data of the use of electric power daily (electrical load) and ARIMA as a method of forecasting. ARIMA method or often called Box-Jenkins technique to find this method is suitable to predict variable costs quickly, simply, and cheaply because it only requires data variables to be predicted. ARIMA can only be used for short-term forecasting. ARIMA is a special linear test, in the form of forecasting this model is completely independent variable variables because this model uses the current model and past values of the dependent variable to produce an accurate short-term forecast.


2015 ◽  
Vol 35 (02) ◽  
pp. 241
Author(s):  
Dyah Susilokarti ◽  
Sigit Supadmo Arif ◽  
Sahid Susanto ◽  
Lilik Sutiarso

Optimum climate condition and water availability are essential to support strategic venue and time for plants to grow and produce.  Precipitation prediction is needed to determine how much precipitation will provide water for plants on each stage of growth. Nowadays, the high variability of precipitation calls for a prediction model that will accurately foreseethe precipitation condition in the future. The prediction conducted is based on time-series data analysis. The research aims to comparethe effectiveness of three precipitation prediction methods, which are Fast Forier Transformation (FFT), Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN).  Their respective performances are determined by their Mean Square Error (MSE) values.  Methods with highest correlation values and lowest MSE shows the best performance. The MSE result for FFT is 14,92; ARIMA is 17,49; and  ANN is 0,07. This research concluded that Artificial Neural Network (ANN) method showed best performance compare to the other two because it had produced a prediction with the lowest MSE value.Keywords: Precipitation prediction, Fast Forier Transformation (FFT), Autoregressive Integrated Moving Average ABSTRAKKondisi iklim dan ketersediaan air yang optimal bagi pertumbuhan dan perkembangan tanaman sangat diperlukan dalam upaya mendukung strategi budidaya tanaman sesuai ruang dan waktu. Prediksi curah hujan sangat diperlukan untuk untuk mengetahui sejauh mana curah hujan dapat memenuhi kebutuhan air pada setiap tahap pertumbuhantanaman. Variabilitas curah hujan yang tinggi saat ini, membutuhkan pemodelan yang dapat memprediksi secara akurat bagaimana kondisi curah hujan dimasa yang akan datang. Prediksi yang dilakukan adalah prediksi berdasarkan urutan waktu ().  Tujuan dari penelitian ini adalah untuk membandingkan akurasi prediksi curah hujan antara metode  (FFT),  (ARIMA) dan (ANN). Kinerja ketiga metode yang digunakan dilihat dari nilai  (MSE). Metode dengan nilai korelasi tertinggi dan nilai MSE terkecil menunjukkan kinerja terbaik. Hasil penelitan untuk FFT diperoleh nilai MSE = 14,92, ARIMA = 17,49 sedangkan ANN = 0,07. Ini menunjukkan bahwa metode   (ANN) menunjukkan kinerja yang paling baik diantara dua metode lainnya karena menghasilkan prediksi yangmempunyai nilai MSE terkecil.Kata kunci: Prediksi curah hujan,FFT, ARIMA dan ANN 


2019 ◽  
Vol 2 (2) ◽  
pp. 90
Author(s):  
Harits Ar Rosyid ◽  
Mutyara Whening Aniendya ◽  
Heru Wahyu Herwanto ◽  
Peizhi Shi

The development of Indonesia's imports fluctuate over years. Inability to anticipate such rapid changes can cause economic slump due to inappropriate policy. For instance, recent years imports in rice led to the extermination of rice reserves. The reason is to maintain the market price of rice in Indonesia. To overcome these changes, forecasting the amount of imports should assist the Government in determining the optimum policy. This can be done by utilizing an algorithm to forecast time series data, in this case the amount of imports in the next few months with a high degree of accuracy. This study uses data obtained from the official website of the Indonesian Ministry of Trade. Then, Seasonal Autoregressive Integrated Moving Average (SARIMA) method is applied to forecast the imports. This method is suitable for the interconnected dependent variables, as well as in forecasting seasonal data patterns. The results of the experiment showed that 6-period forecast is the most accurate results compared to forecasting by 16 and 24 periods. The research resulted in the best model, that is ARIMA (0, 1, 3)(0, 1, 1)12 produces forecasting with a MAPE value of 7.210 % or an accuracy rate of 92.790 %. By applying this imports forecast model, the government can have a forward strategic plans such as selectively imports products and carefully decide the amount of the incoming products to Indonesia. Hence, it could maintain or improve the economic condition where local businesses can grow confidently. 


Author(s):  
Agustina Elisa Dyah Purwandari

AbstractSampit is one of 82 cities in Indonesia which calculate inflation. Inflation is an increase of prices on goods and services in a region. Government’s control is very important because inflation relates to the real income, the exchange rate, import exports, and so on. Inflation is based on the Consumer Price Index (CPI). Because of CPI is a monthly data prices, it is highly influenced by seasonal factors. Therefore, CPI data modelling is needed because it helps the government to make appropriate policies. Method that can be used for time series data with seasonal influences is Seasonal Autoregressive Integrated Moving Average (SARIMA). The results of the study show that the right model for Sampit’s CPI is SARIMA with the order p = 1, d = 1, P = 1, D = 1, Q = 1, s = 12. It is the best model that can built and be used for forecasting because with 95 percent of confidence, the model explains 87.23 percent of data. Forecasting in this research use interval analysis and found that January 2020 may be the highest increase of CPI (inflation) in 2020. Keywords: CPI, Inflation, SARIMA


Sign in / Sign up

Export Citation Format

Share Document