scholarly journals Prediction of students’ academic performance using ANN with mini-batch gradient descent and Levenberg-Marquardt optimization algorithms

2021 ◽  
Vol 2106 (1) ◽  
pp. 012018
Author(s):  
F R J Simanungkalit ◽  
H Hanifah ◽  
G Ardaneswari ◽  
N Hariadi ◽  
B D Handari

Abstract Online learning indirectly increases stress, thereby reducing social interaction among students and leading to physical and mental fatigue, which in turn reduced students’ academic performance. Therefore, the prediction of academic performance is required sooner to identify at-risk students with declining performance. In this paper, we use artificial neural networks (ANN) to predict this performance. ANNs with two optimization algorithms, mini-batch gradient descent and Levenberg-Marquardt, are implemented on students’ learning activity data in course X, which is recorded on LMS UI. Data contains 232 students and consists of two periods: the first month and second month of study. Before ANNs are implemented, both normalization and usage of ADASYN are conducted. The results of ANN implementation using two optimization algorithms within 10 trials each are compared based on the average accuracy, sensitivity, and specificity values. We then determine the best period to predict unsuccessful students correctly. The results show that both algorithms give better predictions over two months instead of one. ANN with mini-batch gradient descent has an average sensitivity of 78%; the corresponding values for ANN with Levenberg-Marquardt are 75%. Therefore, ANN with mini-batch gradient descent as its optimization algorithm is more suitable for predicting students that have potential to fail.

Author(s):  
Sergio Vidal-Beltrán ◽  
José Luis López Bonilla ◽  
Fernando Martínez Piñón ◽  
Jesús Yalja-Montiel

Recently, technologies based on neural networks (NNs) and deep learning have improved in different areas of Science such as wireless communications. This study demonstrates the applicability of NN-based receivers for detecting and decoding sparse code multiple access (SCMA) codewords. The simulation results reveal that the proposed receiver provides highly accurate predictions based on new data. Moreover, the performance analysis results of the primary optimization algorithms used in machine learning are presented in this study.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1685
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul

Sensor-based human activity recognition (S-HAR) has become an important and high-impact topic of research within human-centered computing. In the last decade, successful applications of S-HAR have been presented through fruitful academic research and industrial applications, including for healthcare monitoring, smart home controlling, and daily sport tracking. However, the growing requirements of many current applications for recognizing complex human activities (CHA) have begun to attract the attention of the HAR research field when compared with simple human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning based on complicated artificial neural networks, has a significant degree of recognition efficiency. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine convolutional layers with the efficient RNN-based models was also studied. Experimental studies on the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high level of recognition performance along with a variety of performance indicators, including accuracy, F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of simple and complex activities).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ximing Li ◽  
Luna Rizik ◽  
Valeriia Kravchik ◽  
Maria Khoury ◽  
Netanel Korin ◽  
...  

AbstractComplex biological systems in nature comprise cells that act collectively to solve sophisticated tasks. Synthetic biological systems, in contrast, are designed for specific tasks, following computational principles including logic gates and analog design. Yet such approaches cannot be easily adapted for multiple tasks in biological contexts. Alternatively, artificial neural networks, comprised of flexible interactions for computation, support adaptive designs and are adopted for diverse applications. Here, motivated by the structural similarity between artificial neural networks and cellular networks, we implement neural-like computing in bacteria consortia for recognizing patterns. Specifically, receiver bacteria collectively interact with sender bacteria for decision-making through quorum sensing. Input patterns formed by chemical inducers activate senders to produce signaling molecules at varying levels. These levels, which act as weights, are programmed by tuning the sender promoter strength Furthermore, a gradient descent based algorithm that enables weights optimization was developed. Weights were experimentally examined for recognizing 3 × 3-bit pattern.


Sign in / Sign up

Export Citation Format

Share Document