scholarly journals Influence Metal Berylliumof the Optical FiberCoreon plasmonic Properties

2021 ◽  
Vol 2114 (1) ◽  
pp. 012008
Author(s):  
Hussein Taqi John

Abstract The paper include, the properties of the plasmonic optical fiber in which the core is beryllium metal were studied, were we studied the effect of this metal on the plasmonic fiber, and a mathematical program was used which is COMSOL MULTIPHYSICS, which depends on the finite element method (FEM) to deduce the first three modes and the effective refractive index, neff accompanying each wavelength. It was observed that when order the mode is increased, the lobes will increase, where the mode, LP 01 is one spot and the mode, LP11 are two spots and the mode, LP21 are four spots. An increase in the power indicator is increase red and yellow, and this applies to all modes. That is, by controlling the radius of the fiber core and the wavelength, it is possible to equilibrium the power ratio that propagates forward and backward. The neff , attenuation coefficient and propagation constant for different wavelengths and core radii for the first three modes were also studied. In all cases, we got the higher values when the wavelengths are small the value, and then these values begin to reduction at increasing wavelength.

2019 ◽  
Vol 4 (3) ◽  
pp. 133-142
Author(s):  
Ian Yulianti ◽  
Jauhar Azka ◽  
Ngurah Made Darma Putra ◽  
Budi Astuti

The purpose of this study is to obtain the optimum buried waveguide structure through modeling for refractive index sensor applications. The waveguide cladding material used as Polymethylmethacrylate (PMMA). The core cross-section size was 1 × 1 mm2. The simulation was carried out at a wavelength of 650 nm using the Finite Element Method (FEM). The parameter of the buried waveguide optimized in this model was the core refractive index and the thickness of the upper cladding to obtain a high propagation constant and good sensitivity to refractive index. Modeling was done for various core refractive index values ​​varied in the range of 1.52 to 1.59, which are the refractive index of various types of polymers. To optimize the sensitivity, the thickness of the upper cladding was varied between 0.125mm to 0.5mm. Besides, a simulation was also carried out for a waveguide without an upper cladding. The results show that the optimum waveguide is a waveguide without upper cladding using polyester as core material with a refractive index value of 1.57 and a sensitivity of 4.9 × 10-10rad /m. RIU.


2015 ◽  
Vol 64 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Bronisław Tomczuk ◽  
Dariusz Koteras

Abstract The calculations results of the temperature distribution in a 3-phase transformer with modular amorphous core are presented. They were performed for two frequency values which were higher than the power system one. For the 3D field analyses the Finite Element Method (FEM) was used. The calculated temperature at the points of the core surface has been verified using an infrared camera.


Ingeniería ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 378-392
Author(s):  
Diana Gonzalez Galindo ◽  
Cristhian Torres Urrea ◽  
Oscar Fabian Corredor Camargo ◽  
David Suarez Mora ◽  
Carlos Criollo Paredes

Context: The study of nanotechnology has shown great advances, which include research and exploration of the TeraHertz (THz) region, where one of the most common approaches is the use of photoconductive antennas (PCA) due to the intrinsic properties of their emission the non-destructive nature of this type of radiation. Method: This paper describes the concept of antenna its radiation principles, the mathematical foundations, the material used for radiation, and the adjustment of the parameters to find a result of the pulse in THz by using the finite element method, accessible in the COMSOL Multiphysics software. Results: The result of a computational modeling is presented, which studies the behavior of a PCA, where the input of the chosen model corresponds to the geometry and material of the antenna, thus showing the concentration of the electric field in the GAP zone of the dipole and the substrate of the semiconductor. Conclusions: Given the theoretical foundations that describe the behavior of PCAs in THz, it was possible to configure parameters such as the geometry of the antenna, the laser to be used, and the construction materials to achieve the generation of a photocurrent peak in the order of 0,1-1,2 THz.


2018 ◽  
Vol 3 (1) ◽  
pp. 01
Author(s):  
Nassima M ziou ◽  
Hani Benguesmia ◽  
Hilal Rahali

The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement.


1995 ◽  
Vol 282 ◽  
pp. 233-245 ◽  
Author(s):  
Adam Huang ◽  
Daniel D. Joseph

Perfect core-annular flows are two-phase flows, for example of oil and water, with the oil in a perfectly round core of constant radius and the water outside. Eccentric core flows can be perfect, but the centre of the core is displaced off the centre of the pipe. The flow is driven by a constant pressure gradient, and is unidirectional. This kind of flow configuration is a steady solution of the governing fluid dynamics equations in the cases when gravity is absent or the densities of the two fluids are matched. The position of the core is indeterminate so that there is a family of these eccentric core flow steady solutions. We study the linear stability of this family of flows using the finite element method to solve a group of PDEs. The large asymmetric eigenvalue problem generated by the finite element method is solved by an iterative Arnoldi's method. We find that there is no linear selection mechanism; eccentric flow is stable when concentric flow is stable. The interface shape of the most unstable mode changes from varicose to sinuous as the eccentricity increases from zero.


2022 ◽  
Author(s):  
Siti Rohimah ◽  
He Tian ◽  
Jinfang Wang ◽  
Jianfeng Chen ◽  
Jina Li ◽  
...  

Abstract A plasmonic structure of metal-insulator-metal (MIM) waveguide consisting of a single baffle waveguide and an r-shaped resonator is designed to produce Fano resonance. The finite element method uses the finite element method to analyze the transmission characteristics and magnetic field distributions of the plasmonic waveguide distributions. The simulation results exhibit two Fano resonances that can be achieved by the interference between a continuum state in the baffle waveguide and a discrete state in the r-shaped resonator. The Fano resonances can be simply tuned by changing geometrical parameters of the plasmonic structure. The value variations of geometrical parameters have different effects on sensitivity. Thus, the sensitivity of the plasmonic structure can achieve 1333 nm/RIU, with a figure of merit of 5876. The results of the designed plasmonic structure offer high sensitivity and nano-scale integration, which are beneficial to refractive index sensors, photonic devices at the chip nano-sensors, and biosensors applications.


2016 ◽  
Vol 65 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Krzysztof Stawicki ◽  
Beata Szuflitowska ◽  
Marcin Ziolkowski

Abstract In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT) forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics) and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.


2004 ◽  
Author(s):  
Sigifredo Solano G. ◽  
Catalina A. Ramirez ◽  
Javier Morales ◽  
Pedro I. Torres ◽  
Nicolas A. Gomez Montoya

Sign in / Sign up

Export Citation Format

Share Document