scholarly journals Hydrophilic properties of nano-structure silicate synthesis by sol-gel-dipping technique

2021 ◽  
Vol 2114 (1) ◽  
pp. 012076
Author(s):  
Falah H Ali

Abstract Nano-structure SiO2 was prepared in this work by use Sol-Gel method. Then, studying optical and structural properties of SiO2, the absorption spectrum was determined in UV region, while nano-structure and morphology was investigated by XRD and AFM respectively. The particle size measured by use AFM Analysis which about (55.12 nm).super hydrophilic was gotten after 1 hour of UV irradiation for the prepared SiO2 thin-film.

2014 ◽  
Vol 70 (5) ◽  
Author(s):  
Sheen-Jeff Teh ◽  
Yew-Keong Sin ◽  
Kah-Yoong Chan ◽  
Tai-Wenn Law

In this paper, zinc oxide (ZnO) colloidal spheres structures were prepared by sol-gel method which is simple, effective and less costly. The scanning electron microscopy (SEM) images illustrated the ZnO colloidal spheres structures with diameter size ranging between 200–700 nm. The particle size distribution of colloidal spheres was determined by the added amount of supernatant in dehydration process. 3 mL and 6 mL of added supernatant were resulted particle size distribution dominant in the range of 250–400 nm and 150–250 nm, respectively. Transmission spectra demonstrated the photonic band gap (PBG) of colloidal spheres prepared with different amounts of colloidal suspension coating sample were near ultraviolet and violet region. The thermal annealing process was introduced to narrow the PBG width of colloidal spheres based on Bragg’s law. Current-voltage measurement of ZnO colloidal spheres based thin film with particles size in the range of 150–250 nm showed that the resistivity of the thin film is 4.5 x 106 Ωcm.


2019 ◽  
Vol 19 (1) ◽  
pp. 34-43
Author(s):  
H. Bruncková ◽  
Ľ. Medvecký ◽  
E. Múdra ◽  
A. Kovalčiková

AbstractNeodymium niobate NdNbO4 (NNO) and tantalate NdTaO4 (NTO) thin films (~100 nm) were prepared by sol-gel/spin-coating process on Pb(Zr0.52Ti0.48)O3/Al2O3 substrates with annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The XRD results of NNO and NTO films confirmed tetragonal T-NdNbO4 and T-NdTaO4 phases, respectively, with traces of monoclinic MNdNbO4 and M´-NdTaO4. The surface morphology and topography were investigated by SEM and AFM analysis. NTO was smoother with roughness 5.24 nm in comparison with NNO (6.95 nm). In the microstructure of NNO, small spherical (~ 20-50 nm) T-NdNbO4 and larger needle-like particles (~100 nm) of M-NdNbO4 phase were observed. The compact clusters composed of fine spherical T-NdTaO4 particles (~ 50 nm) and cuboidal M´-NdTaO4 particles (~ 100 nm) were found in NTO. The results of this work can contribute to formation of different polymorphs of films for the application in environmental electrolytic thin film devices.


2014 ◽  
Vol 895 ◽  
pp. 63-68 ◽  
Author(s):  
Mohd Syafiq Zulfakar ◽  
Huda Abdullah ◽  
Wan Nasarudin Wan Jalal ◽  
Sahbudin Shaari ◽  
Zainuddin Zalita

The effect of morphological structures and optical band gap of (1-x)ZnAl2O4xSiO2samples with compositions ofx= 0.00, 0.05, 0.10 and 0.15 were prepared by sol-gel method. Spin coating technique was used to deposited the (1-x)ZnAl2O4xSiO2as a thin film and to investigate the structural and optical band gap. The produced thin film samples were annealed at 450 °C for 1h. Field emission scanning electron microscope (FESEM) was used to investigate the surface morphology of the samples. The average particle size for (1-x)ZnAl2O4xSiO2is about 331.23 nm. The particle size are tend to increase as the composition of SiO2increased. XRD analysis shows the formation of cubic structure phase and dominant peak has been observed with Miller Indices (311) plane. The average crystallite size,Dwas calculated with average size about 8 13 nm. The optical band gap was calculated for (1-x)ZnAl2O4xSiO2samples and it was found within range of 3.34 to 3.94 eV.


2016 ◽  
Vol 852 ◽  
pp. 238-243 ◽  
Author(s):  
Shi Guang Shang ◽  
Xin Li ◽  
Ling Zhao ◽  
Rui Lu ◽  
Hai Feng Chen

Titanium dioxide (TiO2) nanoparticles were synthesized by sol-gel method and the influences of calcination temperature and pH level on the particle size, crystal structure and morphology of the TiO2 nanoparticles were investigated. X-ray diffraction patterns reveal that the anatase to rutile phase transition occurs at calcination temperature varying from 600°C to 800°C and the phase transformation temperature obviously decreases as the pH level of reaction solution decreases. Scanning electron microscopy images show that pH level and calcination temperature play an important role in controlling the particle size, crystal structure and morphology of the as-prepared TiO2 nanoparticles. The gas sensing properties of Ag-doped TiO2 nanoparticles were measured and the experimental results exhibit that the gas sensor based on Ag-doped TiO2 nanoparticle film has high sensitivity and fast response to ethanol.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Rajaeiyan ◽  
M. M. Bagheri-Mohagheghi

A sol-gel method based on the Pechini process was used to synthesize different phases of alumina nanoparticles using a polymeric precursor with Aluminum nitrate. The emphasis was on investigating the effect of two different complexing agents, urea and citric acid, on the structural properties, particle size, and phase transformation during the heat treatment that was studied by XRD, TEM, SEM, BET, and FT-IR spectroscopy. The obtained results showed that particles do get fused together at high temperatures, and also the size of particles increases with the increase of annealing temperature. It was concluded that the size ofα-alumina synthesized by urea was 10–15 nm, whereas the sample with citric acid yieldedα-powder with particle size of 200 nm. Also, the resulting powder prepared by urea exhibited larger surface area (84.2 m2/gm−1) compared to citric acid (39.92 m2/gm−1) at .


Author(s):  
Dong XU ◽  
Qi SONG ◽  
Ke ZHANG ◽  
Hong-Xing XU ◽  
Yong-Tao YANG ◽  
...  
Keyword(s):  
Sol Gel ◽  

2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


Sign in / Sign up

Export Citation Format

Share Document