scholarly journals Detection of Groundwater in Iraq-Wasit Governorate Using Remote Sensing and GIS

2021 ◽  
Vol 2114 (1) ◽  
pp. 012091
Author(s):  
Ali Sadeq Bahet ◽  
Mutasim Ibrahim Malik

Abstract The groundwater in Iraq has been studied for the need for it due to the shortage of surface water levels.The vegetation cover index, the soil moisture index, and the surface water index were used to detect the presence of groundwater in Wasit Governorate, Iraq. Those indicators that appear on the ground cover and indicate the presence of groundwater in the study area were compared with the coordinates of wells underground water. The results were identical with information obtained from the Ministry of Water Resources.

Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Arnab Saha ◽  
Manti Patil ◽  
Vikas Chandra Goyal ◽  
Devendra Singh Rathore

Soil moisture takes an important part involving climate, vegetation and drought. This paper explains how to calculate the soil moisture index and the role of soil moisture. The objective of this study is to assess the moisture content in soil and soil moisture mapping by using remote sensing data in the selected study area. We applied the remote sensing technique which relies on the use of the soil moisture index (SMI) which uses the data obtained from satellite sensors in its algorithm. The relationship between land surface temperature (LST) and the normalized difference vegetation index (NDVI) are based on experimental parameterization for the soil moisture index. Multispectral satellite data (visible, red and near-infrared (NIR) and thermal infrared sensor (TIRS) bands) were utilized for assessment of LST and to make vegetation indices map. Geographic Information System (GIS) and image processing software were utilized to determine the LST and NDVI. NDVI and LST are considered as essential data to obtain SMI calculation. The statistical regression analysis of NDVI and LST were shown in standardized regression coefficient. NDVI values are within range −1 to 1 where negative values present loss of vegetation or contaminated vegetation, whereas positive values explain healthy and dense vegetation. LST values are the surface temperature in °C. SMI is categorized into classes from no drought to extreme drought to quantitatively assess drought. The final result is obtainable with the values range from 0 to 1, where values near 1 are the regions with a low amount of vegetation and surface temperature and present a higher level of soil moisture. The values near 0 are the areas with a high amount of vegetation and surface temperature and present the low level of soil moisture. The results indicate that this method can be efficiently applied to estimate soil moisture from multi-temporal Landsat images, which is valuable for monitoring agricultural drought and flood disaster assessment.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1564 ◽  
Author(s):  
Melanie Oertel ◽  
Francisco Meza ◽  
Jorge Gironás ◽  
Christopher A. Scott ◽  
Facundo Rojas ◽  
...  

Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries.


2012 ◽  
Vol 9 (4) ◽  
pp. 4587-4631 ◽  
Author(s):  
W. B. Anderson ◽  
B. F. Zaitchik ◽  
C. R. Hain ◽  
M. C. Anderson ◽  
M. T. Yilmaz ◽  
...  

Abstract. Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived monitoring systems to inform national and international drought response. At the same time, the very diversity and data scarcity that necessitate remote monitoring also make it difficult to evaluate the reliability of these systems. Here we apply a suite of remote monitoring techniques to characterize the temporal and spatial evolution of the 2010–2011 Horn of Africa drought. Diverse satellite observations allow for evaluation of meteorological, agricultural, and hydrological aspects of drought, each of which is of interest to different stakeholders. Focusing on soil moisture, we apply triple collocation analysis (TCA) to three independent methods for estimating soil moisture anomalies to characterize relative error between products and to provide a basis for objective data merging. The three soil moisture methods evaluated include microwave remote sensing using the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) sensor, thermal remote sensing using the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm, and physically-based land surface modeling using the Noah land surface model. It was found that the three soil moisture monitoring methods yield similar drought anomaly estimates in areas characterized by extremely low or by moderate vegetation cover, particularly during the below-average 2011 long rainy season. Systematic discrepancies were found, however, in regions of moderately low vegetation cover and high vegetation cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product takes advantage of the relative strengths of each method, as judged by the consistency of anomaly estimates across independent methods. This approach holds potential as a remote soil moisture-based drought monitoring system that is robust across the diverse climatic and ecological zones of East Africa.


2018 ◽  
pp. 41-46
Author(s):  
Adlin Dancheva

In this paper the application of Remote Sensing and GIS as a means of performing aero – space monitoring of forest ecosystems dynamics is being considered. The purpose of this work is to create a model for monitoring the dynamic of forest ecosystems, based on Remote Sensing and GIS. The results of eco-monitoring can be used to update plans and policies for forest ecosystem management. The territory of Vrachanski Balkan Nature park was chosen as the subject of research as there is a certain anthropogenic pressure there. The results presented are obtained by spatial-time analysis of certain aerospace data indices. To carry out the study optical satellite images were used, on the basics of which three indices were calculated: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Difference Greenness Index (NDGI). A comparative analysis has been created and results of the degree of correlation between the different indices are presented, as well as indicators from the different test areas and related changes in the individual points in time. The results of the survey aim to assess the dynamics and condition of the forest vegetation on the territory of Vrachanski Balkan Nature park and can be utilised in activities related to monitoring, mapping and forest management.


Author(s):  
Tiago de M. Inocêncio ◽  
Alfredo Ribeiro Neto ◽  
Alzira G. S. S. Souza

ABSTRACT The sequence of drought events in the Northeast of Brazil in recent decades raises attention to the importance of studying this phenomenon. The objective of this study was to evaluate the duration and severity of drought events from 1988 to 2018 in hydrographic basins of the state of Pernambuco, Brazil, using two drought indexes: Standardized Soil Moisture Index and Soil Moisture Condition Index, calculated based on data of the Soil Moisture Project of the European Space Agency’s Climate Change Initiative. The duration of the droughts was determined considering the months between their beginning and end, and their severity was based on the area formed in the graph between the curve of the index and the x-axis. The soil moisture database showed to be a promising tool for the analysis and monitoring of drought events in the Northeast region of Brazil, mainly for analysis and monitoring of drought events. The indexes allowed the evaluation of the drought phenomenon over the 30-year period, showing increases from 2012, which were more pronounced in the Semiarid region. The hydrographic basins responded differently to a same event, depending on the climate characteristics of the region in which they are located. Consecutive years with rainfall below the historical mean increased the magnitude of the droughts, as found for the 2012-2017 period, in which the indexes presented delays to return to more favorable values, showing the effect that one drought year has on the following year.


Author(s):  
Alain Pietroniro ◽  
Jessika Töyrö ◽  
Robert Leconte ◽  
Geoff Kite

Sign in / Sign up

Export Citation Format

Share Document