scholarly journals Pool boiling of nanofluids on biphilic surfaces

2021 ◽  
Vol 2116 (1) ◽  
pp. 012006
Author(s):  
P Pontes ◽  
E Freitas ◽  
D Fernandes ◽  
A Teixeira ◽  
R Ferreira ◽  
...  

Abstract This study addresses the combination of customized surface modification with the use of nanofluids, to infer on its potential to enhance pool boiling heat transfer. Hydrophilic surfaces patterned with superhydrophobic regions are prepared and used to act as surface interfaces with nanofluids (water with gold, silver and alumina nanoparticles) and infer on the effect of the nature and concentration of the nanoparticles in bubble dynamics and consequently in heat transfer processes. The main qualitative and quantitative analysis was based on extensive post-processing of synchronized high-speed and thermographic images. The results show an evident benefice of using biphilic patterns, but with well-stablished distances between the superhydrophobic regions. Such patterns allow a controlled bubble coalescence, which promotes fluid convection at the hydrophilic surface between the superhydrophobic regions, which clearly contributes to cool down the surface. The effect of the nanofluids, for the low concentrations used here, was observed to play a minor role.

2000 ◽  
Author(s):  
Jungho Kim ◽  
Fatih Demiray ◽  
Nagaraja Yaddanapudi

Abstract A study of single bubbles growing on a microscale heater array kept at nominally constant temperature was performed. The behavior of bubbles nucleating at a single site at two different temperatures (22.5 K and 27.5 K superheat) is compared for saturated pool boiling of FC-72 at 1 atm. It is concluded that energy is transferred from the surface through similar heat transfer mechanisms at both superheats. Microlayer evaporation was observed to play a minor role in the overall heat transfer, with microconvection/transient conduction being the dominant mechanism. Evaluation of various heat transfer models are made.


Author(s):  
Payam Delgoshaei ◽  
Jungho Kim

Measurements of space and time resolved heat transfer during subcooled pool boiling of pentane in earth gravity were obtained using a microscale heater array. Data from individual heater elements in the array were synchronized with bottom and side view images from two high-speed cameras. The heat transfer mechanisms during bubble growth were found to be dependent on bubble dynamics and bubble growth time. Single phase heat transfer mechanisms (transient conduction and/or microconvection) were found to be dominant for single bubbles with short growth times. Two phase heat transfer mechanisms (microlayer evaporation and/or contact line evaporation) were found to be dominant for bubbles with longer growth times.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Eduardo Freitas ◽  
Pedro Pontes ◽  
Ricardo Cautela ◽  
Vaibhav Bahadur ◽  
João Miranda ◽  
...  

This study addresses the combination of customized surface modification with the use of nanofluids, to infer on its potential to enhance pool-boiling heat transfer. Hydrophilic surfaces patterned with superhydrophobic regions were developed and used as surface interfaces with different nanofluids (water with gold, silver, aluminum and alumina nanoparticles), in order to evaluate the effect of the nature and concentration of the nanoparticles in bubble dynamics and consequently in heat transfer processes. The main qualitative and quantitative analysis was based on extensive post-processing of synchronized high-speed and thermographic images. To study the nucleation of a single bubble in pool boiling condition, a numerical model was also implemented. The results show an evident benefit of using biphilic patterns with well-established distances between the superhydrophobic regions. This can be observed in the resulting plot of the dissipated heat flux for a biphilic pattern with seven superhydrophobic spots, δ = 1/d and an imposed heat flux of 2132 w/m2. In this case, the dissipated heat flux is almost constant (except in the instant t* ≈ 0.9 when it reaches a peak of 2400 W/m2), whilst when using only a single superhydrophobic spot, where the heat flux dissipation reaches the maximum shortly after the detachment of the bubble, dropping continuously until a new necking phase starts. The biphilic patterns also allow a controlled bubble coalescence, which promotes fluid convection at the hydrophilic spacing between the superhydrophobic regions, which clearly contributes to cool down the surface. This effect is noticeable in the case of employing the Ag 1 wt% nanofluid, with an imposed heat flux of 2132 W/m2, where the coalescence of the drops promotes a surface cooling, identified by a temperature drop of 0.7 °C in the hydrophilic areas. Those areas have an average temperature of 101.8 °C, whilst the average temperature of the superhydrophobic spots at coalescence time is of 102.9 °C. For low concentrations as the ones used in this work, the effect of the nanofluids was observed to play a minor role. This can be observed on the slight discrepancy of the heat dissipation decay that occurred in the necking stage of the bubbles for nanofluids with the same kind of nanoparticles and different concentration. For the Au 0.1 wt% nanofluid, a heat dissipation decay of 350 W/m2 was reported, whilst for the Au 0.5 wt% nanofluid, the same decay was only of 280 W/m2. The results of the numerical model concerning velocity fields indicated a sudden acceleration at the bubble detachment, as can be qualitatively analyzed in the thermographic images obtained in this work. Additionally, the temperature fields of the analyzed region present the same tendency as the experimental results.


Author(s):  
Xiaopeng Qu ◽  
Huihe Qiu

The effect of acoustic field on the dynamics of micro thermal bubble is investigated in this paper. The micro thermal bubbles were generated by a micro heater which was fabricated by standard Micro-Electro-Mechanical-System (MEMS) technology and integrated into a mini chamber. The acoustic field formed in the mini chamber was generated by a piezoelectric plate which was adhered on the top side of the chamber’s wall. The dynamics and related heat transfer induced by the micro heater generated vapor bubble with and without the existing of acoustic field were characterized by a high speed photograph system and a micro temperature sensor. Through the experiments, it was found that in two different conditions, the temperature changing induced by the micro heater generated vapor bubble was significantly different. From the analysis of the high speed photograph results, the acoustic force induced micro thermal bubble movements, such as forcibly removing, collapsing and sweeping, were the main effects of acoustic enhanced boiling heat transfer. The experimental results and theoretical analysis were helpful for understanding of the mechanisms of acoustic enhanced boiling heat transfer and development of novel micro cooling devices.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Nitin Doifode ◽  
Sameer Gajghate ◽  
Abdul Najim ◽  
Anil Acharya ◽  
Ashok Pise

Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.


2011 ◽  
Vol 312-315 ◽  
pp. 352-357 ◽  
Author(s):  
K.C. Leong ◽  
L.W. Jin ◽  
I. Pranoto ◽  
H.Y Li ◽  
J.C. Chai

This paper presents the results of an experimental study of heat transfer in a pool boiling evaporator with porous insert. Different types of graphite foams were tested with the phase change coolant FC-72 in a designed thermosyphon. Comparisons between the graphite foams and a solid copper block show that the porous structure enhances pool boiling significantly. The boiling thermal resistance of the tested graphite foams was found to be about 2 times lower than that of the copper block. The bubble formation recorded by a high speed camera indicates that boiling from a graphite foam is more vigorous than from a copper block. The designed thermosyphon with graphite foam insert can remove heat fluxes of up to 112 W/cm2 with the maximum heater temperature maintained below 100°C.


2016 ◽  
Vol 745 ◽  
pp. 032132 ◽  
Author(s):  
E. Teodori ◽  
T. Palma ◽  
T. Valente ◽  
A.S. Moita ◽  
A.L.N. Moreira

Sign in / Sign up

Export Citation Format

Share Document