scholarly journals Evaporation of levitating liquid microdroplets over a dry heated surface

2021 ◽  
Vol 2119 (1) ◽  
pp. 012128
Author(s):  
K A Kunts ◽  
D V Zaitsev ◽  
O A Kabov

Abstract The present work is devoted to the study of the evaporation process of micro-sized water droplets levitating over a heated dry substrate. The study of this process is relevant in connection with the development of spray cooling systems. Due to the extreme complexity of this phenomenon the mechanism of spray cooling is still not fully understood. In this work we studied the evaporation of micro-sized water droplets levitating over a dry substrate heated from below. The working area was open to the atmosphere. Evaporation was studied in the temperature substrate range from 23 to 95°C. During the experiment local values of the substrate temperature and geometric characteristics of the drop were determined. In the experiment a shadow method with high spatial resolution was used, shooting was performed with a high-speed camera.

Author(s):  
Ryan P. Anderson ◽  
Alfonso Ortega

Understanding the transport mechanisms involved in a single droplet impinging on a heated surface is imperative to the complete understanding of droplet and spray cooling. Evidence in the literature suggests that gas assisted sprays and mist flows are more efficient than sprays consisting only of liquid droplets. There has been few if any fundamental studies on gas-assisted droplets or spray cooling, in which a carrier gas or vapor stream propels the droplet to the target surface. The current work extends previous studies of a droplet impinging on a heated surface conducted by the same group from the single phase regime into the evaporative regime. For both regimes, understanding the transport physics due to the heat transfer from the heated surface to the droplet and then by convection and evaporation to the airflow is of fundamental importance. High-speed photography was used to capture the spreading process and yielded results that correlated well with previously published isothermal and single-phase results. The heat transfer was measured with a fitting approach by which the instantaneous temperature profile was matched to an analytic solution to determine the instantaneous value of the centerline heat transfer coefficient. A very large increase in the heat dissipation was observed when compared to previously published single-phase results. Heat transfer was optimized at Reynolds numbers that produced an optimally thin liquid film and high heat and mass transfer coefficients on the surface of the film.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Miguel Sanches ◽  
Ana Moita ◽  
Ana Paula Ribeiro ◽  
António Luis Moreira

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Fitrah Qalbina ◽  
Deendarlianto Deendarlianto ◽  
Indarto Indarto ◽  
Teguh Wibowo

Spray cooling merupakan aplikasi dari droplets yang digunakan sebagai salah satu teknik pendinginan. Pemanfaatan dari multiple droplets ini banyak dikaji sebagai sistem pendinginan pada peralatan elektronik dan pembuatan material quenching. Dinamika tumbukan multiple droplets pada permukaan bidang miring yang dipanaskan akan dikaji pada penelitian ini. Material uji yang digunakan adalah stainless steel 304 . Temperatur permukaan yang diamati adalah 120 ºC, 180 ºC dan 220 ºC pada bilangan Weber medium 70 dengan variasi bidang kemiringan adalah sebesar 10º, 20º dan 30º. Dinamika droplet selama tumbukan diamati menggunakan high-speed camera dengan kecepatan 4000 fps kemudian hasilnya diolah menggunakan image processing. Telah diperoleh hasil bahwa spreading ratio tertinggi terjadi saat temperatur permukaan 180 ºC pada sudut kemiringan 30 º dan terendah pada temperatur 220 ºC. Fenomena secondary droplet dapat meningkatkan nilai spreading ratio. Adapun fenomena bounching terjadi pada temperatur 220 ºC


2019 ◽  
Vol 89 (10) ◽  
pp. 1506
Author(s):  
П.П. Храмцов ◽  
В.А. Васецкий ◽  
В.М. Грищенко ◽  
М.В. Дорошко ◽  
М.Ю. Черник ◽  
...  

A new method of hypersonic flow generation is proposed and the results of an experimental study of hypersonic flow past cones with half-angles = 3° and = 12° are presented. The Mach numbers of the studied incident flows were = 18 ( = 3°) and = 14.4 ( = 12°). The use of a light-gas facility, where an accelerating channel was replaced with Laval nozzle, allows us to obtain a hypersonic outflow with optical density sufficiently high for flow visualization and diagnostics with the help of optical methods. The flow structure was visualized by means of the shadow method using the Foucault knife and the slit. Shadowgraphs were recorded by a high-speed camera with a frame rate of 300,000 fps and an exposure time of 1 µs. The Mach number for the incident flow was calculated from the inclination angle of the shock wave on shadowgraphs.


Author(s):  
J. Torres ◽  
A. Perdones ◽  
A. Garcia ◽  
F. J. Diez

Thermal control is a major constraint in spacecraft development as increased demand on electronics performance requires large heat dissipation from smaller surfaces which has led to increased challenges for thermal control. Spray cooling has a great amount of application in industrial processes as a heat removal method. It is thought to be the future in thermal management systems in space because of its capability for ‘close’ and accurate control of heat removal. Spray cooling is based on phase change heat transfer generating high heat transfer rates for low superheats. This last term is used to describe the difference in temperature between the heated surface and the cooling fluid. When the temperature of the surface to be cooled rises above the saturation temperature of the fluid splashed to the surface, a phase change occurs at the solid liquid interface during the boiling regime. However, the most interesting phase (regime) is the nucleating boiling where the critical heat flux, CHF, is reached. The CHF is then achieved due to the vapor generation is such as great that the liquid cannot still be in contact with the surface. Thus the heat is transferred through the vapor if there is not enough cold fluid. The thermal conductivity of vapor is lower and so the efficient of the cooling process. This turns out in a decrease on heat flux. Nowadays it is being taken more into account nanofluids as a technique capable of enhancing heat transfer. Nanofluids, a mix of nano-size particles in a base fluid, have been found to have a very high thermal conductivity as compared to the base fluid. In You et al., 2003; Kim et al., 2004a; Moreno et al., 2005 water was used with various Al2O3 particle concentration in a flat plate nucleate pool boiling system. They came across with no change in the heat transfer coefficient but a dramatic enhancement in CHF. They also found that high concentrations can degrade nucleate boiling. The aim of this project is study the effects of spray cooling with suspended nano-particles as an enhanced method for heat transfer removal. The working fluid was water with different concentrations of alumina-oxide particles added. The alumina oxide particles were supplied by Nanophase Technologies (Nano Tek® Alumina Oxide AL-01000-003-025) which had a mean diameter of 60 nm. Three different concentrations were used and the following: .5 g/L, 1 g/L, 2 g/L. Since clumping of particles can affect the heat transfer properties of the droplets, the solution was placed on inside an ultrasonic bath and left there for at least 24 hrs and immediately used in the experiments. Two nozzles were used in this experiment to study a wide range of sauter diameter of droplets. The experiment was carried out using three experimental techniques which looked into different characteristics of spray cooling. In the first mode, the fluid was sprayed onto a copper block heater surface while it was imaged with a high speed camera and synchronized with a high speed Nd-YAG laser. 9 thermocouples were positioned inside the copper block heater, as seen on Figure 1, to measure critical heat flux, while a camera was used to record different impact properties and the influence of nano-particles. Some of these properties were pool buildup size, spread, and duration of pool. For the second imaging technique, the spray on the heated surface was also considered to be an impinging jet, so to visualize the flow of this jet and how the heated surface affected it, PIV (Particle Image Velocimetry) was used in the study. A third imaging technique was used to study the droplet behavior when in contact with a heated surface. A transparent glass heater made of aluminum silicate glass and coated with an ITO (indium tin oxide) film was used as the heater. The size of the drops had an average diameter of 2.38 mm. When compared to the copper block study, this method allows images to be taken from directly below the clear glass heater. Furthermore, these images allow for a clear edge detection of drops as they spread on the surface and what characteristics they develop when the droplets have different concentrations of nanoparticles, as seen on Figure 2. The experiment used a pulsed laser to provide the background illumination. This project is a continuing research project.


2021 ◽  
Author(s):  
Ganesh Guggilla ◽  
Ramesh Narayanaswamy ◽  
Peter Stephan ◽  
Arvind Pattamatta

Abstract High-performance computing systems are needed in advanced computing services such as machine learning and artificial intelligence. Consequently, the increase in electron chip density results in high heat fluxes and requires good thermal management to maintain the servers. Spray cooling using liquid offers higher heat transfer rates and is efficient when implemented in electronics cooling. Detailed studies of fundamental mechanisms involved in spray cooling, such as single droplet and multiple droplet interactions, are required to enhance the process's knowledge. The present work focuses on studying a train of two FC-72 droplets impinging over a heated surface. Experimental investigation using high-speed photography and infrared thermography is conducted. Simultaneously, numerical simulations using opensource CFD package, OpenFOAM are carried out, emphasizing the significance of contact angle hysteresis. The surface temperature is chosen as a parameter, and different boiling regimes along with Dynamic Leidenfrost point (DLP) for the present impact conditions are identified. Spreading hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature, are studied and compared.


2014 ◽  
Vol 592-594 ◽  
pp. 1642-1646
Author(s):  
V. Harshavardhan Reddy ◽  
Shaik Sadiq ◽  
S. Arunkumar ◽  
M. Venkatesan

The study of evaporation of water droplets over horizontal heated surfaces is an intense area of research because of its wide application in various fields of heat transfer. The characterization of the behavior of water droplets is important in studying the cooling effects produced over impinging surfaces. The present study focuses on analyzing the shape and size of the droplets by applying image processing techniques. In the present work, a fixed volume of single water droplet is made to impinge on a horizontal Aluminium surface using a designed microcontroller based syringe pump. The formation and the dynamics of bubbles are recorded using a high speed camera. Image processing technique is used to determine the droplet parameters such as contact angle, spreading radius and to study the shape of the droplet. The surface temperature is measured using a Thermocouple connected to an online Data acquisition system. The effect of the characteristics of droplet on the decrease in surface temperature can be seen from the temperature – time graph and the processed photographs taken using high speed camera. The decrease in base plate temperature is found to be depending on the behavior and the properties of the droplet.


Sign in / Sign up

Export Citation Format

Share Document