scholarly journals Heat transfer in nanofluid spray cooling of a solid heated surface for cooling systems in civil and military applications

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Miguel Sanches ◽  
Ana Moita ◽  
Ana Paula Ribeiro ◽  
António Luis Moreira
Author(s):  
Eelco Gehring ◽  
Mario F. Trujillo

A primary mechanism of heat transfer in spray cooling is the impingement of numerous droplets onto a heated surface. This mechanism is isolated in the present and ongoing work by numerically simulating the impact of a single train of FC-72 droplets employing an implicit free surface capturing methodology. The droplet frequency and velocity ranges from 2000–4000 Hz, and 0.5–2 m/s, respectively, with a fixed drop size of 239 μm. This gives a corresponding Weber and Reynolds range of 10–170 and 330–1300, respectively. Results show that the impingement zone is largely free of phase change effects due to the efficient suppression of the local temperature field well below the saturated value. Due in part to the relatively high value of the Prandtl number and the compression of the boundary layer from the impingement flow, a cell size on the order of 1 μm is necessary to adequately capture the heat transfer dynamics. It is shown that the cooling behavior increases in relation to increasing frequency and impact velocity, but is most sensitive to velocity. In fact, for sufficiently low velocities the calculations show that the momentum imparted on the film is insufficient to maintain a near stationary liquid crown. The consequence is a noticeable penalty on the cooling behavior.


Author(s):  
Ryan P. Anderson ◽  
Alfonso Ortega

Understanding the transport mechanisms involved in a single droplet impinging on a heated surface is imperative to the complete understanding of droplet and spray cooling. Evidence in the literature suggests that gas assisted sprays and mist flows are more efficient than sprays consisting only of liquid droplets. There has been few if any fundamental studies on gas-assisted droplets or spray cooling, in which a carrier gas or vapor stream propels the droplet to the target surface. The current work extends previous studies of a droplet impinging on a heated surface conducted by the same group from the single phase regime into the evaporative regime. For both regimes, understanding the transport physics due to the heat transfer from the heated surface to the droplet and then by convection and evaporation to the airflow is of fundamental importance. High-speed photography was used to capture the spreading process and yielded results that correlated well with previously published isothermal and single-phase results. The heat transfer was measured with a fitting approach by which the instantaneous temperature profile was matched to an analytic solution to determine the instantaneous value of the centerline heat transfer coefficient. A very large increase in the heat dissipation was observed when compared to previously published single-phase results. Heat transfer was optimized at Reynolds numbers that produced an optimally thin liquid film and high heat and mass transfer coefficients on the surface of the film.


Author(s):  
Ganesh Guggilla ◽  
Arvind Pattamatta ◽  
Ramesh Narayanaswamy

Abstract Due to the advancements in computing services such as machine learning and artificial intelligence, high-performance computing systems are needed. Consequently, the increase in electron chip density results in high heat fluxes and required sufficient thermal management to maintain the servers. In recent times, the liquid cooling techniques become prominent over air cooling as it has significant advantages. Spray cooling is one such efficient cooling process which can be implemented in electronics cooling. To enhance the knowledge of the process, detailed studies of fundamental mechanisms involved in spray cooling such as single droplet and multiple droplet interactions are required. The present work focuses on the study of a train of droplets impinging over a heated surface using FC-72 liquid. The surface temperature is chosen as a parameter, and the Dynamic Leidenfrost point (DLP) for the present impact conditions is identified. Spread hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature, are studied and compared.


Volume 3 ◽  
2004 ◽  
Author(s):  
Bohumil Horacek ◽  
Jungho Kim ◽  
Kenneth T. Kiger

Time and space resolved heat transfer data on a nominally isothermal surface cooled by two spray nozzles was obtained using an array of individually controlled microheaters. Visualization and measurements of the liquid-solid contact area and three-phase contact line length were made using a total internal reflectance technique. The spacing between the nozzles and the heated surface was varied between 7 mm and 17 mm. Little interaction between the two sprays was observed for the tested conditions, with the heat flux produced by a single nozzle remaining comparable to that produced by two nozzles, provided the areas considered were limited to the regions impacted by the sprays. Variations in the heat transfer across the surface, however, increased significantly with decreasing spacing. The phase change heat transfer was strongly correlated with the length of the three-phase contact line.


Volume 3 ◽  
2004 ◽  
Author(s):  
Ratnesh K. Sharma ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

Increases in microprocessor power density along with an accompanying spatial variation in power density has been well documented in recent years. These combined factors pose a severe challenge for the provisioning of cooling resources at the microprocessor level. The use of thermal inkjet technology to precisely supply coolant onto the surface of a microprocessor has the potential to address this problem in a chip-scale form factor. By providing coolant when and where it is needed on the surface of a chip or package, very high critical heat fluxes can be obtained in an energy efficient manner in a minimum of physical space. In this paper, the unique heat transfer characteristics of inkjet assisted spray cooling of a heated surface are investigated. Sprays of water are used to cool heated surfaces ranging from 281mm2 to 35mm2. Several experiments are conducted at different nozzle-to-surface distances to measure critical heat flux (CHF) at different flow rates and firing frequencies. The impact of volumetric flux variation on CHF is studied. CHF data, measured over broad range of operating conditions is correlated to volumetric flux and liquid properties. Flow visualization studies are also conducted to understand the vapor-liquid interaction at the heater surface and the intermediate region. Jet breakup length studies are carried out to understand the propagation of Rayleigh instabilities in the spray jets and, subsequent, formation of liquid drops. CHF data combined with fluid flow studies have been used to optimize the nozzle-to-surface clearance. Results obtained from these experiments are invaluable for the design of micro scale spray cooling devices for chips.


Author(s):  
Yongxian Guo ◽  
Jianyuan Jia ◽  
Weidong Wang ◽  
Shaorong Zhou

Based on the maximum CHF (critical heat flux) criterion, an optimal heat transfer criterion, which is called H criterion, was proposed. Experimental apparatuses were conducted. Distilled water was used as the working fluid. Three different DANFOSS nozzles with cone angles being 54°, 50° and 54° respectively were used. A 30×30mm2 square copper surface was used as the heated surface. Experimental results indicated that the volumetric fluxes were proportioned to P0.5, where P is the pressure drop across the nozzles. The optimal distance between the nozzles and the heated surface were derived. The results indicated that the optimal heat transfer appeared while the outside of the impellent thin spray film inscribed in the square heated surface. Based on the H criterion aforementioned, two DANFOSS nozzles of the three, with cone angles being 54° and 50° respectively, were used to study the temperature distribution of the heated surface while there were spray inclination angles during spray cooling experiments. Distilled water was also used impacting on the 30×30mm2 square copper surface aforementioned and a circular heated copper surface with diameters being 30mm respectively. The heat flux of the surface was kept in constant (about 26–35W/cm2). The inclination angles were 0°, 10°, 20°, 30°, 40° and 50° respectively. Three thermocouples imbedded in the heated surface were used to predict the grads of the temperature of the surface. Experimental results indicated that the temperature and the grads of the temperature of the surface increases first and then decreases with the increase of the inclination angle.


Author(s):  
U. Oh ◽  
Jun Ishimoto ◽  
Naoki Harada ◽  
Daisuke Tan

The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed CFD based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Yunus Tansu Aksoy ◽  
Yanshen Zhu ◽  
Pinar Eneren ◽  
Erin Koos ◽  
Maria Rosaria Vetrano

Cooling by impinging droplets has been the subject of several studies for decades and still is, and, in the last few years, the potential heat transfer enhancement obtained thanks to nanofluids’ use has received increased interest. Indeed, the use of high thermal conductivity fluids, such as nanofluids’, is considered today as a possible way to strongly enhance this heat transfer process. This enhancement is related to several physical mechanisms. It is linked to the nanofluids’ rheology, their degree of stabilization, and how the presence of the nanoparticles impact the droplet/substrate dynamics. Although there are several articles on droplet impact dynamics and nanofluid heat transfer enhancement, there is a lack of review studies that couple these two topics. As such, this review aims to provide an analysis of the available literature dedicated to the dynamics between a single nanofluid droplet and a hot substrate, and the consequent enhancement or reduction of heat transfer. Finally, we also conduct a review of the available publications on nanofluids spray cooling. Although using nanofluids in spray cooling may seem a promising option, the few works present in the literature are not yet conclusive, and the mechanism of enhancement needs to be clarified.


Author(s):  
Ramin Soujoudi

This paper investigates application of Method of Lines (MOL) and Inverse Heat Conduction techniques in spray cooling process. A flat face of a heated cylinder is cooled by using a nozzle spray and using room temperature water as a cooling fluid. The numerical analysis is done using MOL to estimate exposed surface temperature, surface heat flux, and convection heat transfer coefficient [3],[4]. Since there is no exact solution to verify the approximation result, for the verification purpose and accuracy of the result, the numerical result from this study is compared to other approximation results with experimental research done by Chen-Lee and Qiao-Chandra [1]. The results illustrate that disparity between the outcome of MOL and the one generated by Chen and Lee’s raw data is very insignificant throughout the whole time domain. This discrepancy between these two estimated results proves that MOL is a very reliable approximation technique compared to other finite element methods which require a finer mesh size and significant amount of calculations[2],[5]. However, comparing the results obtained through MOL with Qiao and Chandra shows that the difference between the estimated heat transfer coefficient and estimated heat flux converges rapidly for the short times of 0 < t < 60, but as the time passes, the MOL approximation results diverge slowly until it reaches its maximum value at ninety seconds, and the variance remains almost constant for the rest of the time period.


Author(s):  
J. Torres ◽  
A. Perdones ◽  
A. Garcia ◽  
F. J. Diez

Thermal control is a major constraint in spacecraft development as increased demand on electronics performance requires large heat dissipation from smaller surfaces which has led to increased challenges for thermal control. Spray cooling has a great amount of application in industrial processes as a heat removal method. It is thought to be the future in thermal management systems in space because of its capability for ‘close’ and accurate control of heat removal. Spray cooling is based on phase change heat transfer generating high heat transfer rates for low superheats. This last term is used to describe the difference in temperature between the heated surface and the cooling fluid. When the temperature of the surface to be cooled rises above the saturation temperature of the fluid splashed to the surface, a phase change occurs at the solid liquid interface during the boiling regime. However, the most interesting phase (regime) is the nucleating boiling where the critical heat flux, CHF, is reached. The CHF is then achieved due to the vapor generation is such as great that the liquid cannot still be in contact with the surface. Thus the heat is transferred through the vapor if there is not enough cold fluid. The thermal conductivity of vapor is lower and so the efficient of the cooling process. This turns out in a decrease on heat flux. Nowadays it is being taken more into account nanofluids as a technique capable of enhancing heat transfer. Nanofluids, a mix of nano-size particles in a base fluid, have been found to have a very high thermal conductivity as compared to the base fluid. In You et al., 2003; Kim et al., 2004a; Moreno et al., 2005 water was used with various Al2O3 particle concentration in a flat plate nucleate pool boiling system. They came across with no change in the heat transfer coefficient but a dramatic enhancement in CHF. They also found that high concentrations can degrade nucleate boiling. The aim of this project is study the effects of spray cooling with suspended nano-particles as an enhanced method for heat transfer removal. The working fluid was water with different concentrations of alumina-oxide particles added. The alumina oxide particles were supplied by Nanophase Technologies (Nano Tek® Alumina Oxide AL-01000-003-025) which had a mean diameter of 60 nm. Three different concentrations were used and the following: .5 g/L, 1 g/L, 2 g/L. Since clumping of particles can affect the heat transfer properties of the droplets, the solution was placed on inside an ultrasonic bath and left there for at least 24 hrs and immediately used in the experiments. Two nozzles were used in this experiment to study a wide range of sauter diameter of droplets. The experiment was carried out using three experimental techniques which looked into different characteristics of spray cooling. In the first mode, the fluid was sprayed onto a copper block heater surface while it was imaged with a high speed camera and synchronized with a high speed Nd-YAG laser. 9 thermocouples were positioned inside the copper block heater, as seen on Figure 1, to measure critical heat flux, while a camera was used to record different impact properties and the influence of nano-particles. Some of these properties were pool buildup size, spread, and duration of pool. For the second imaging technique, the spray on the heated surface was also considered to be an impinging jet, so to visualize the flow of this jet and how the heated surface affected it, PIV (Particle Image Velocimetry) was used in the study. A third imaging technique was used to study the droplet behavior when in contact with a heated surface. A transparent glass heater made of aluminum silicate glass and coated with an ITO (indium tin oxide) film was used as the heater. The size of the drops had an average diameter of 2.38 mm. When compared to the copper block study, this method allows images to be taken from directly below the clear glass heater. Furthermore, these images allow for a clear edge detection of drops as they spread on the surface and what characteristics they develop when the droplets have different concentrations of nanoparticles, as seen on Figure 2. The experiment used a pulsed laser to provide the background illumination. This project is a continuing research project.


Sign in / Sign up

Export Citation Format

Share Document