scholarly journals Research on Classification of Daily Load Curve of Distribution Network Based on Improved SSA-FCM

2021 ◽  
Vol 2121 (1) ◽  
pp. 012011
Author(s):  
Haoran Shi ◽  
Rong Cao ◽  
Wenbo Hao ◽  
Mingyu Xu ◽  
Heng Hu ◽  
...  

Abstract In the analysis of three-phase unbalance in distribution network, the accuracy of daily load curve classification results determines the size of three-phase unbalance. Aiming at the shortcomings of Fuzzy C-Means (FCM), a fuzzy C-Means clustering algorithm (SSA-FCM) optimized based on Sparrow Search Algorithm (SSA) is proposed. The cluster validity evaluation index is introduced to get the optimal quantity of clusters, and the SSA is used to search for the initial cluster center, which solves the problem that the FCM algorithm relies on the initial value and is easy to converge to local optimal solution. The simulation results show that, compared with the FCM algorithm, the load curves classified into the same category by SSA-FCM are closer together.

2016 ◽  
Vol 26 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Ayub Shokrollahi ◽  
Babak Mazloom-Nezhad Maybodi

The energy efficiency in wireless sensor networks (WSNs) is a fundamental challenge. Cluster-based routing is an energy saving method in this type of networks. This paper presents an energy-efficient clustering algorithm based on fuzzy c-means algorithm and genetic fuzzy system (ECAFG). By using FCM algorithm, the clusters are formed, and then cluster heads (CHs) are selected utilizing GFS. The formed clusters will be remaining static but CHs are selected at the beginning of each round. FCM algorithm forms balanced clusters and distributes the consumed energy among them. Using static clusters also reduces the data overhead and consequently the energy consumption. In GFS, nodes energy, the distance from nodes to the base station and the distance from each node to its corresponding cluster center are considered as determining factors in CHs selection. Then, genetic algorithm is also used to obtain fuzzy if–then rules of GFS. Consequently, the system performance is improved and appropriate CHs can be selected, hence energy dissipation is reduced. The simulation results show that ECAFG, compared with the existing methods, significantly reduces the energy consumption of the sensor nodes, and prolongs the network lifetime.


2020 ◽  
Vol 10 (3) ◽  
pp. 579-585
Author(s):  
Hui Zhang ◽  
Hongjie Zhang

Accurate segmentation of brain tissue has important guiding significance and practical application value for the diagnosis of brain diseases. Brain magnetic resonance imaging (MRI) has the characteristics of high dimensionality and large sample size. Such datasets create considerable computational complexity in image processing. To efficiently process large sample data, this article integrates the proposed block clustering strategy with the classic fuzzy C-means clustering (FCM) algorithm and proposes a block-based integrated FCM clustering algorithm (BI-FCM). The algorithm first performs block processing on each image and then clusters each subimage using the FCM algorithm. The cluster centers for all subimages are again clustered using FCM to obtain the final cluster center. Finally, the distance from each pixel to the final cluster center is obtained, and the corresponding division is performed according to the distance. The dataset used in this experiment is the Simulated Brain Database (SBD). The results show that the BI-FCM algorithm addresses the large sample processing problem well, and the theory is simple and effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yang Yang ◽  
Ming Li ◽  
Xie Ma

To further improve the performance of the point cloud simplification algorithm and reserve the feature information of parts point cloud, a new method based on modified fuzzy c-means (MFCM) clustering algorithm with feature information reserved is proposed. Firstly, the normal vector, angle entropy, curvature, and density information of point cloud are calculated by combining principal component analysis (PCA) and k-nearest neighbors (k-NN) algorithm, respectively; Secondly, gravitational search algorithm (GSA) is introduced to optimize the initial cluster center of fuzzy c-means (FCM) clustering algorithm. Thirdly, the point cloud data combined coordinates with its feature information are divided by the MFCM algorithm. Finally, the point cloud is simplified according to point cloud feature information and simplified parameters. The point cloud test data are simplified using the new algorithm and traditional algorithms; then, the results are compared and discussed. The results show that the new proposed algorithm can not only effectively improve the precision of point cloud simplification but also reserve the accuracy of part features.


2013 ◽  
Vol 419 ◽  
pp. 814-819
Author(s):  
Xian Zang ◽  
Kil To Chong

This paper proposes a novel clustering algorithm named global kernel fuzzy-c means (GK-FCM) to segment the speech into small non-overlapping blocks for consonant/vowel segmentation. This algorithm is realized by embedding global optimization and kernelization into the classical fuzzy c-means clustering algorithm. It proceeds in an incremental way attempting to optimally add new cluster center at each stage through the kernel-based fuzzy c-means. By solving all the intermediate problems, the final near-optimal solution is determined in a deterministic way. This algorithm overcomes the well-known shortcomings of fuzzy c-means and improves the clustering accuracy. Simulation results demonstrate the effectiveness of the proposed method in consonant/vowel segmentation.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3791
Author(s):  
Tianli Ma ◽  
Song Gao ◽  
Chaobo Chen ◽  
Xiaoru Song

To deal with the problem of multitarget tracking with measurement origin uncertainty, the paper presents a multitarget tracking algorithm based on Adaptive Network Graph Segmentation (ANGS). The multitarget tracking is firstly formulated as an Integer Programming problem for finding the maximum a posterior probability in a cost flow network. Then, a network structure is partitioned using an Adaptive Spectral Clustering algorithm based on the Nyström Method. In order to obtain the global optimal solution, the parallel A* search algorithm is used to process each sub-network. Moreover, the trajectory set is extracted by the Track Mosaic technique and Rauch–Tung–Striebel (RTS) smoother. Finally, the simulation results achieved for different clutter intensity indicate that the proposed algorithm has better tracking accuracy and robustness compared with the A* search algorithm, the successive shortest-path (SSP) algorithm and the shortest path faster (SPFA) algorithm.


2013 ◽  
Vol 765-767 ◽  
pp. 670-673
Author(s):  
Li Bo Hou

Fuzzy C-means (FCM) clustering algorithm is one of the widely applied algorithms in non-supervision of pattern recognition. However, FCM algorithm in the iterative process requires a lot of calculations, especially when feature vectors has high-dimensional, Use clustering algorithm to sub-heap, not only inefficient, but also may lead to "the curse of dimensionality." For the problem, This paper analyzes the fuzzy C-means clustering algorithm in high dimensional feature of the process, the problem of cluster center is an np-hard problem, In order to improve the effectiveness and Real-time of fuzzy C-means clustering algorithm in high dimensional feature analysis, Combination of landmark isometric (L-ISOMAP) algorithm, Proposed improved algorithm FCM-LI. Preliminary analysis of the samples, Use clustering results and the correlation of sample data, using landmark isometric (L-ISOMAP) algorithm to reduce the dimension, further analysis on the basis, obtained the final results. Finally, experimental results show that the effectiveness and Real-time of FCM-LI algorithm in high dimensional feature analysis.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 554 ◽  
Author(s):  
Barbara Cardone ◽  
Ferdinando Di Martino

One of the main drawbacks of the well-known Fuzzy C-means clustering algorithm (FCM) is the random initialization of the centers of the clusters as it can significantly affect the performance of the algorithm, thus not guaranteeing an optimal solution and increasing execution times. In this paper we propose a variation of FCM in which the initial optimal cluster centers are obtained by implementing a weighted FCM algorithm in which the weights are assigned by calculating a Shannon Fuzzy Entropy function. The results of the comparison tests applied on various classification datasets of the UCI Machine Learning Repository show that our algorithm improved in all cases relating to the performances of FCM.


2013 ◽  
Vol 339 ◽  
pp. 297-300 ◽  
Author(s):  
Xue Jiao Dong ◽  
Xiao Yan Zhang

In this paper, linking with the basic principle of FCM (Fuzzy c-means clustering) algorithm, on the basis of theory research, a method of the cluster analysis of FCM is proposed. Firstly, the approximate optimal solution obtained by the improved FCM algorithm is taken as the original value of the FCM algorithm, then carrying on the local search to obtain the global optimal solution, the final segmentation result is achieved at last. The experiment results prove that in the view of the flame image segmentation, this method shows the good clustering performance and fast convergence rate, and has the widespread serviceability, so it is the practical method in image segmentation.


2012 ◽  
Vol 190-191 ◽  
pp. 265-268
Author(s):  
Ai Hong Tang ◽  
Lian Cai ◽  
You Mei Zhang

This article describes two kinds of Fuzzy clustering algorithm based on partition,Fuzzy C-means algorithm is on the basis of the hard C-means algorithm, and get a big improvement, making large data similarity as far as possible together. As a result of Simulation, FCM algorithm has more reasonable than HCM method on convergence, data fusion, and so on.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1479
Author(s):  
Xingquan Ji ◽  
Xuan Zhang ◽  
Yumin Zhang ◽  
Ziyang Yin ◽  
Ming Yang ◽  
...  

This paper develops a novel dynamic three-phase symmetric distribution network reconfiguration (DNR) approach based on hierarchical clustering with timing constraints, which can divide the time period according to the time-varying symmetric load demand and symmetric distributed generations (DGs) output condition for a given time interval. The significance of the proposed technique is that by approximating the cluster center as the load status and DGs output status of the corresponding period, in this way, the intractable dynamic reconfiguration problem can be recast as multiple single-stage static three-phase symmetric DNR problems, which can effectively reduce the complexity of the three-phase symmetric dynamic reconfiguration. Furthermore, an improved fireworks algorithm considering heuristic rules (H-IFWA) is proposed and investigated to efficiently manage each single-stage static three-phase symmetric DNR problem. In order to avoid trapping into a local optimum or to facilitate the computational performance, the power moment method and the coding method based on heuristic rules are employed to reduce the solution space. The effectiveness of the proposed H-IFWA is validated on the IEEE 33, 119-bus system and a practical-scale Taiwan power company (TPC) 84-bus test system with DGs.


Sign in / Sign up

Export Citation Format

Share Document