scholarly journals Battery Management System Performance Enhancement using Single Sliding Mode Based Charge Equalization Controller

2021 ◽  
Vol 2128 (1) ◽  
pp. 012026
Author(s):  
Ali Ashraf ◽  
Abdul-Azim Sobaih ◽  
Essam Nabil

Abstract In this paper, the study aims to evolve a precision model of a Battery charge equalization controller (BCEC) that manage each cell of a lithium-ion (Li-ion) battery, monitoring a nd balancing by charging a nd discharging a series-connected Li-ion battery with several cells (n) in electric vehicle (E.V.) applications. An intelligent Sliding mode controller is evolved to activate bidirectional cell switches and regulate a chopper circuit’s direct current (DC-DC flyback converter circuit) with PWM generation. To implement a small-scale BCEC, the model consists of individual models of an E.V., cells of Li-ion battery, a fly-back converter, and a single sliding mode controller (SSMC) for charging and discharging are integrated with n series-connected cells of Li-ion-battery. The BCEC output shows that the cells are operated within a safe range, and the difference in the state of charge (SOC) is maintained to be 0.1%. Comparing the developed BCEC with the existing controllers, with the performance, control algorithm, efficiency, power loss, size, and cost.

Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Manh-Kien Tran ◽  
Andre DaCosta ◽  
Anosh Mevawalla ◽  
Satyam Panchal ◽  
Michael Fowler

Lithium-ion (Li-ion) batteries are an important component of energy storage systems used in various applications such as electric vehicles and portable electronics. There are many chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order for the battery applications to operate safely and effectively, battery modeling is very important. The equivalent circuit model (ECM) is a battery model often used in the battery management system (BMS) to monitor and control Li-ion batteries. In this study, experiments were performed to investigate the performance of three different ECMs (1RC, 2RC, and 1RC with hysteresis) on four Li-ion battery chemistries (LFP, NMC, LMO, and NCA). The results indicated that all three models are usable for the four types of Li-ion chemistries, with low errors. It was also found that the ECMs tend to perform better in dynamic current profiles compared to non-dynamic ones. Overall, the best-performed model for LFP and NCA was the 1RC with hysteresis ECM, while the most suited model for NMC and LMO was the 1RC ECM. The results from this study showed that different ECMs would be suited for different Li-ion battery chemistries, which should be an important factor to be considered in real-world battery and BMS applications.


The green energy evolution initiated the use of electric and hybrid electric vehicles at present on roads. These vehicles extensively use different types of batteries and among them lithium ion batteries are prominent. The Li-ion battery pack constitutes number of Li-ion battery cells connected in series and parallel configuration. This battery bank needs a suitable battery management system for its efficient operation. This paper presents a novel battery management system to monitor and control the battery current, voltage, state of charge and most importantly the cell temperature. The detail BMS scheme for Li-ion battery pack is presented and simulation is carried out to validate its performance with a driving cycle of electric car.


Author(s):  
Satadru Dey ◽  
Beshah Ayalew

Improvement of the safety and reliability of the Lithium-ion (Li-ion) battery operation is one of the key tasks for advanced Battery Management Systems (BMSs). It is critical for BMSs to be able to diagnose battery electrochemical faults that can potentially lead to catastrophic failures. In this paper, an observer-based fault diagnosis scheme is presented that can detect, isolate and estimate some internal electrochemical faults. The scheme uses a reduced-order electrochemical-thermal model for a Li-ion battery cell. The paper first presents a modeling framework where the electrochemical faults are modeled as parametric faults. Then, multiple sliding mode observers are incorporated in the diagnostic scheme. The design and selection of the observer gains as well as the convergence of the observers are verified theoretically via Lyapunov’s direct method. Finally, the performance of the observer-based diagnostic scheme is illustrated via simulation studies.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 446 ◽  
Author(s):  
Muhammad Umair Ali ◽  
Amad Zafar ◽  
Sarvar Hussain Nengroo ◽  
Sadam Hussain ◽  
Muhammad Junaid Alvi ◽  
...  

Energy storage system (ESS) technology is still the logjam for the electric vehicle (EV) industry. Lithium-ion (Li-ion) batteries have attracted considerable attention in the EV industry owing to their high energy density, lifespan, nominal voltage, power density, and cost. In EVs, a smart battery management system (BMS) is one of the essential components; it not only measures the states of battery accurately, but also ensures safe operation and prolongs the battery life. The accurate estimation of the state of charge (SOC) of a Li-ion battery is a very challenging task because the Li-ion battery is a highly time variant, non-linear, and complex electrochemical system. This paper explains the workings of a Li-ion battery, provides the main features of a smart BMS, and comprehensively reviews its SOC estimation methods. These SOC estimation methods have been classified into four main categories depending on their nature. A critical explanation, including their merits, limitations, and their estimation errors from other studies, is provided. Some recommendations depending on the development of technology are suggested to improve the online estimation.


Author(s):  
Puspita Ningrum ◽  
Novie Ayub Windarko ◽  
Suhariningsih Suhariningsih

Abstract— Battery is one of the important components in the development of renewable energy technology. This paper presents a method for estimating the State of Charge (SoC) for a 4Ah Li-ion battery. State of Charge (SoC) is the status of the capacity in the battery in the form of a percentage which makes it easier to monitor the battery during use. Coulomb calculations are widely used, but this method still contains errors during integration. In this paper, SoC measurement using Open Circuit Voltage Compensation is used for the determination of the initial SoC, so that the initial SoC reading is more precise, because if the initial SoC reading only uses a voltage sensor, the initial SoC reading is less precise which affects the next n second SoC reading. In this paper, we present a battery management system design or commonly known as BMS (Battery Management System) which focuses on the monitoring function. BMS uses a voltage sensor in the form of a voltage divider circuit and an ACS 712 current sensor to send information about the battery condition to the microcontroller as the control center. Besides, BMS is equipped with a protection relay to protect the battery. The estimation results of the 12volt 4Ah Li-ion battery SoC with the actual reading show an error of less than 1%.Keywords—Battery Management System, Modified Coulomb Counting, State of Charge.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2014 ◽  
Vol 5 (2) ◽  
pp. 87-103
Author(s):  
Arab AlSharif ◽  
Manohar Das

A piecewise linear, time-varying model for modeling the charging and discharging processes of Li-ion batteries is introduced in this paper. Such a model consists of a group of piecewise linear model segments, whose parameters are adapted online over time. Thus, the combined overall model is capable of modeling nonlinear time-varying processes, such as a Li-ion battery charging and discharging processes, quite well. Modeling results of both simulated test data and actual test data gathered from a high-power automotive-grade Li-ion cell are presented. The close matches between actual and model-predicted behaviors demonstrate the effectiveness of the proposed modeling approach and indicate the potential usefulness of such models for a battery management system.


2017 ◽  
Vol 2017 (13) ◽  
pp. 1437-1440 ◽  
Author(s):  
Fangfang Zhu ◽  
Guoan Liu ◽  
Cai Tao ◽  
Kangli Wang ◽  
Kai Jiang

Sign in / Sign up

Export Citation Format

Share Document