scholarly journals Mathematical analysis of a self-service car wash in the aspect of application of renewable energy sources

2021 ◽  
Vol 2130 (1) ◽  
pp. 012004
Author(s):  
M J Geca

Abstract The paper presents a model of a self-service car wash. Sub-models of water, electricity and natural gas consumption were developed. Heated water is used to wash vehicles and in winter to heat the floor. Electricity is mainly used to power high pressure pumps. The data to develop submodels were based on a time series of 1 year from a 5-station car wash located in central Poland. Chemical consumption and costs were not analyzed in this paper. Generally, this data is quite difficult to access and not provided by car wash manufacturers or owners. The developed model allowed estimating the possibility of using renewable energy sources in the form of solar collectors and photovoltaic panels to balance the energy demand of a car wash depending on the number of washing stands and car wash load. Application of solar collectors allows saving 334 m3 of natural gas per year and 11.2 MWh of electricity in the case of applying photovoltaic panels. The amount of electricity consumed by the carwash is so large that mounting the panels on the whole available area will not provide the required amount anyway. Installation of photovoltaic installation on the premises of touchless car wash is justified in the case of connecting the installation to the public network, which was treated as a battery. The cost of maintaining such a battery is 20% of each stored kWh. As a result of the applied solutions, the CO2 emission will be reduced.

2019 ◽  
Vol 116 ◽  
pp. 00084
Author(s):  
Krystian Szczerbak

The climate in Poland is slightly disparate in each region. The differences in temperature not always come along with the intensity of solar radiation in 5 climate zones. South of the country is colder, but well irradiated by the Sun and northern regions have milder climate, but are less irradiated. This fact alone makes people consider the suitability and safety of using renewable energy sources such as air-to-water heat pumps, solar collectors and photovoltaics instead of more traditional, fossil fuel powered sources. This paper presents a comparison analysis of energy demand and the cost for heating in a group of single-family buildings by 4 variants (gas boiler, gas boiler and solar collectors, air-to-water heat pump, air-to-water heat pump and photovoltaics) in 5 chosen cities in each polish climate zone. Calculations were done for space heating and domestic hot water energy demand, CO2 emissions and cumulative costs for all variants and locations. The results confirm the inconsistency of polish climate and have shown profitability and utility of renewable energy sources.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2021 ◽  
Vol 11 (11) ◽  
pp. 5142
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

The use of fossil fuels (coal, fuel, and natural gas) to generate electricity has been reduced in the European Union during the last few years, involving a significant decrease in greenhouse gas emissions [...]


Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.


2021 ◽  
Vol 144 ◽  
pp. 14-21
Author(s):  
Vladimir P. Polevanov ◽  

The growth in primary energy consumption in 2019 by 1.3% was provided by renewable energy sources and natural gas, which together provided 75% of the increase. China in the period 2010–2020 held a leading position in the growth of demand for energy resources, but according to forecasts, India will join it in the current decade.


2021 ◽  
Vol 3-4 (185-186) ◽  
pp. 109-125
Author(s):  
Myroslav Podolskyy ◽  
Dmytro Bryk ◽  
Lesia Kulchytska-Zhyhailo ◽  
Oleh Gvozdevych

An analysis of Ukraine’s sustainable development targets, in particular in the field of energy, resource management and environmental protection, are presented. It is shown that regional energetic is a determining factor for achieving the aims of sustainable development. Changes in the natural environment in Ukraine due to external (global) and internal (local) factors that are intertwined and overlapped can cause threats to socio-economic development. It is proved that in the areas of mining and industrial activity a multiple increase in emissions of pollutants into the environment are observed. The comparison confirmed the overall compliance of the structure of consumption of primary energy resources (solid fossil fuels, natural gas, nuclear fuel, oil and petroleum products, renewable energy sources) in Ukraine and in the European Union, shows a steaby trend to reduce the share of solid fuels and natural gas and increasing the shares of energy from renewable sources. For example, in Ukraine the shares in the production and cost of electricity in 2018 was: the nuclear power plants – 54.33 % and in the cost – 26.60 %, the thermal power – 35.95 and 59.52 %, the renewable energy sources – 9.6 and 13.88 %. The energy component must be given priority, as it is crucial for achieving of all other goals of sustainable development and harmonization of socio-economic progress. The paper systematizes the indicators of regional energy efficiency and proposes a dynamic model for the transition to sustainable energy development of the region.


Author(s):  
Hanna Irena Jędrzejuk

This chapter describes a general issue of selecting renewable energy sources (RES) and technical systems. To achieve the nearly zero-energy building (nZEB) standard, application of an RES (e.g., solar, wind, geothermal, hydropower, and biomass energy) is necessary. Each type of RES has specific characteristics and can be used to produce electricity and/or heat in certain systems. A short review of various systems using renewable energy sources is presented. To find the required and satisfactory solution that guaranties meeting the nZEB standard, an analysis must be carried out considering a number of aspects: local availability, structure and time-dependence of energy demand, building construction, economic conditions, legal regulations, and specific requirements. Finally, two examples of modernisation towards the nZEB standard are included.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2051 ◽  
Author(s):  
Renato Lemm ◽  
Raphael Haymoz ◽  
Astrid Björnsen Gurung ◽  
Vanessa Burg ◽  
Tom Strebel ◽  
...  

The transition towards a reliable, sustainable, low-carbon energy system is a major challenge of the 21st century. Due to the lower energy density of many renewable energy sources, a future system is expected to be more decentralized, leading to significant changes at the regional scale. This study analyzes the feasibility of the energy transition in the Swiss canton of Aargau as an illustrative example and explores different strategies to satisfy the local demand for electricity, heat, and fuel by 2035. In particular, we assess the potential contribution of biomass. Four scenarios demonstrate what energy demand proportion could be covered by bioenergy if different priorities were given to the provision of heat, electricity, and fuel. The impact of improved conversion technologies is also considered. The results show that the sustainably available renewable energy sources in canton Aargau will probably not be sufficient to cover its forecasted energy demand in 2035, neither with present nor future biomass conversion technologies. At best, 74% of the energy demand could be met by renewables. Biomass can increase the degree of autarky by a maximum of 13%. Depending on the scenario, at least 26–43% (2500–5700 GWh) of total energy demand is lacking, particularly for mobility purposes.


2020 ◽  
Author(s):  
Aleksandr Ivakhnenko ◽  
Beibarys Bakytzhan

<p>In global socioeconomic development facing climate change challenges to minimize the output of greenhouse gas (GHG) emissions and moving to a more low-carbon economy (LCE) the major driving force for success in achieving Sustainable Development Goals (SDGs) is the cost of energy generation. One of the main factors for energy source selection in the power supply and energy type generation process is the price parameters often influenced at different degree by government policies incentives, technological and demographic challenges in different countries. We research the energy sources situation and possible development trends for developing country Kazakhstan with resource-based economy. In general, the economic aspects affect the quality and quantity of energy generated from different sources with incentives for environmental concern. Traditional energy sources in Kazakhstan, such as coal, oil and natural gas remain low-cost in production due to high reserve base, which leads to steady growth in this area. In general, the cost for generating 1 kWh of energy from the cheapest carbon source of energy sub-bituminous coal is about 0.0024 $, for natural gas 0.0057 $, conventional oil 0.0152 $ (conventional diesel is 0.0664 $) and for expensive unconventional oil 0.0361 $, whereas renewable hydrocarbons could potentially become more competitive with unconventional oil production (methanol 0.0540 $, biodiesel 0.0837 $, bioethanol 0.1933 $ for generating 1 kWh). Furthermore, we consider the main non-traditional and renewable energy sources of energy from the sun, wind, water, and biofuels, hydrogen, methane, gasoline, uranium, and others. There is a difference between the breakeven prices of conventional gas and biomethane (0.0057 $ and 0.047 - 0.15 $ respectively averaging 0.0675 $ per 1 kWh for biomethane) which is often related to the difference in their production methods. The main advantage of biomethane is environmentally friendly production. We also propose an assessment of fuel by environmental characteristics, where one of the hazardous sources Uranium is forth cheap 0.0069 $ per kWh, but the environmental damage caused by its waste is the greatest. At the same time hydropower is seven times more expensive than uranium, but it does not cause direct health damage issues, however influencing significantly ecosystem balance. Hydrogen fuel is the most expensive among others. Overall in Kazakhstan energy-producing from the sun, wind and biogas is more expensive comparing with global trends from 0.4 to 5.5 cents per 1 kWh, but remains cheaper for hydropower. In addition, based on the research findings we analyzed the potential for sustainable non-renewable and renewable energy development in the future for the case of the resource-based economy in Kazakhstan. </p>


2014 ◽  
Vol 1057 ◽  
pp. 3-10
Author(s):  
Ivan Chmúrny

Analysis of energy consumption during the operation of the renewed elementary school in Lietavská Lúčka, which uses renewable energy sources. The results are based on the consumption of natural gas and electricity according to data from the meters of market suppliers of energy from 2006 to 2013.


Sign in / Sign up

Export Citation Format

Share Document