scholarly journals The influence of the structural parameters of polycarboxylate superplasticizer on the dispersion and adsorption

2021 ◽  
Vol 2133 (1) ◽  
pp. 012011
Author(s):  
Shaohong Zhu ◽  
Yanmei Lin ◽  
Yunhui Fang ◽  
Yuliang Ke ◽  
Huazhen Lai ◽  
...  

Abstract Polycarboxylate superplasticizers with different structural parameters were synthesized by isobutylene polyoxyethylene ether, acrylic acid and ammonium persulfate as raw materials from the perspective of molecular design. The influence of polycarboxylate superplasticizer on cement adsorption was characterized by cement adsorption capacity test and fluidity test, etc. At the same time, the adsorption change of polycarboxylate superplasticizer on the surface of cement particles was also revealed. It was found that the best adsorption and dispersion properties on cement paste were obtained under the heating synthesis process when the structure of the water reducing agent was designed to have a weight average molecular weight of 55128, a macromonomer conversion rate of 84.61%, and a side chain density of 0.1725. For the normal temperature process, when the weight average molecular weight was 103920, the macromonomer conversion rate 92.03%, and the side chain density 0.3115, the best effects in cement can be achieved.

1995 ◽  
Vol 60 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Hynek Balcar ◽  
Jan Sedláček ◽  
Marta Pacovská ◽  
Vratislav Blechta

Catalytic activity of the tungsten aryloxo complexes WCl5(OAr) and WOCl3(OAr), where Ar = 4-t-C4H9C6H4, 2,6-(t-C4H9)2C6H3, 2,6-Cl2C6H3, 2,4,6-Cl3C6H2, and 2,4,6-Br3C6H2 in polymerization of phenylacetylene (20 °C, monomer to catalyst molar ratio = 1 000) was studied. The activity of WCl5(OAr) as unicomponent catalysts increases with increasing electron withdrawing character of the -OAr ligand. Addition of two equivalents of organotin cocatalysts (Me4Sn, Bu4Sn, Ph4Sn, Bu3SnH) to WCl5(O-C6H2Cl3-2,4 ,6) has only slight positive effect (slightly higher polymer yield and/or molecular weight of poly(phenylacetylene)s was achieved). However, in the case of WOCl3(O-C6H3Cl2-2, 6) catalyst, it enhances the activity considerably by eliminating the induction period. Poly(phenylacetylene)s prepared with the catalysts studied have weight-average molecular weight ranging from 100 000 to 200 000. They are trans-prevailing and have relatively low molar fraction of monomer units comprised in cyclohexadiene sequences (about 6%).


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 4137-4151 ◽  
Author(s):  
Aikfei Ang ◽  
Zaidon Ashaari ◽  
Edi Suhaimi Bakar ◽  
Nor Azowa Ibrahim

An alkali lignin (OL) with a weight-average molecular weight (Mw) of 11646 g/mol was used to prepare low-molecular weight lignin for resin synthesis. The low-molecular weight lignin feedstock was obtained via base-catalysed depolymerisation (BCD) treatments at different combined severity factors. Sequential fractionation of the OL and BCD-treated lignins using organic solvents with different Hildebrand solubility parameters were used to alter the homogeneity of the OL. The yield and properties of OL itself and OL and BCD-treated OL dissolved in propan-1-ol (F1), ethanol (F2), and methanol (F3) were determined. Regardless of the treatment applied, a small amount of OL was dissolved in F1 and F2. The BCD treatment did not increase the yield of F1 but did increase the yields of F2 and F3. Gel permeation chromatography (GPC) showed that the repolymerization reaction occurred in F3 for all BCD-treated OL, so these lignins were not suitable for use as feedstocks for resin production. The GPC, 13Carbon-nuclear magnetic resonance, and Fourier transform infrared spectroscopy analyses confirmed that the F3 in OL exhibited the optimum yield, molecular weight distribution, and chemical structure suitable for use as feedstocks for resin synthesis.


In the present study, the influence of dextransucrase of Weissella cibaria NITCSK4 (DSWc4), sucrose concentration, and reaction temperature on the yield of low molecular weight dextran (LMWD-DexWc4) was investigated using mixed level Taguchi design and back propagation neural network (BPNN). BPNN model with three neurons in a hidden layer generated a low mean squared error (MSE). The determination coefficients (R2 -value) for ANN and Taguchi models were 0.991 and 0.998, respectively. Considering absolute average deviation (AAD) and MSE, Taguchi model is more adequate. Among three factors, the percentage yield of low molecular weight of dextran is invariably dependent on the sucrose concentration. The study suggested that a low sucrose concentration (3% w/v), DSWc4 (0.25 IU/ml) and slightly high temperature (35°C) ultimately favored the production of LMWD-DexWc4 (91.639%). LMW-DexWc4 produced by DSWc4 at optimized conditions was analyzed. The weight average molecular weight of LMW-DexWc4 was calculated using M-H expression, found to be 85775 (≈90 kDa). The relative percentage error between the number and weight average molecular weight was found to be less (4.42%). The polydispersity (PD) index of the LMW-DexWc4 was found to be 0.9576 and the value is close to 1. The PD value depicted that the molecular weight distribution of dextran was narrowly dispersed.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1230
Author(s):  
Jie Li ◽  
Jinhua Du

This research was to explore the distribution and some molecular characterization of arabinoxylan in wheat beer (B), beer foam (BF) and defoamed beer (DB) because of the crucial influences of arabinoxylan on wheat beer and its foam. The purified arabinoxylan from B, BF, and DB were fractionated by ethanol of 50%, 67%, 75%, and 80%. The monosaccharide composition, substitution degree (Ara/Xyl ratio, A/X), and average degrees of polymerization (avDP) of arabinoxylan were investigated. Molecular weight and microstructure were also involved in this study by GPC-LLS and SEM, respectively. Under the same ethanol concentration, the arabinoxylan content in the BF was higher than the other two, respectively, and it was precipitated in BF fraction with 50% ethanol which accounted for 80.84% of the total polysaccharides. Meanwhile, the greatest substitution degree (A/X) and highest value of avDP of the arabinoxylan was found in all beer foam fractions regardless of the concentration of ethanol used. The average degrees of polymerization (avDP) of arabinoxylan displayed a significant difference (p < 0.05) among B, BF, and DB. Furthermore, arabinoxylan presented varied microstructure with irregular lamellas and spherical structures and the weight-average molecular weight (Mw) of arabinoxylan showed the lowest values in BF, while the largest values were shown in DB. Therefore, arabinoxylan was more accumulated in beer foam, especially in 50% ethanol, characterised by greater value of A/X and avDP, as well as lower Mw. It was suggested that the arabinoxylan played important roles in maintaining wheat beer foam characteristics.


1956 ◽  
Vol 34 (6) ◽  
pp. 1107-1117 ◽  
Author(s):  
G. C. Wood ◽  
David B. Smith

Apurinic acid prepared by mild acid treatment of sodium desoxyribonucleate and of fractions of sodium desoxyribonucleate was sufficiently stable to permit estimations of molecular weight and polydispersity. Apurinic acid from unfractionated desoxyribonucleate had a weight-average molecular weight of 25,000 and was very polydisperse. Preparations from fractionated desoxyribonucleate representing about half the original nucleic acid were much less polydisperse and had molecular weights of about 10,000.


1976 ◽  
Vol 49 (5) ◽  
pp. 1290-1304
Author(s):  
M. Kurata ◽  
H. Okamoto ◽  
M. Iwama ◽  
M. Abe ◽  
T. Homma

Abstract An iterative computer method was proposed for estimating the degree of branching and molecular weight distribution simultaneously from a pair of measurements on intrinsic viscosity and gel-permeation chromatography. The validity of the method as applied to randomly branched polymers was tested by using both fractionated and unfractionated samples of branched polystyrenes. It was experimentally concluded that the average number of branch points per unit molecular weight, λ, can be determined by this method with an accuracy of about 15%, and the weight-average molecular weight with accuracy of about 10%.


Sign in / Sign up

Export Citation Format

Share Document