scholarly journals Increasing the photoluminescence intensity of silicon nitride by forming K and N radioactive centres

2022 ◽  
Vol 2155 (1) ◽  
pp. 012008
Author(s):  
D O Murzalinov ◽  
A A Shaikenova ◽  
A G Umirzakov ◽  
A I Fedosimova ◽  
B A Baitimbetova ◽  
...  

Abstract Creating a light emitter to transfer an electrical signal by optical way has a great importance in development of optoelectronics. The silicon nitride films studied by photoluminescence techniques, and determined luminescence is associated with presence of an extended zone of tail states. Defects play the main role in radiative recombination for structures annealed at 600 °C and 1100 °C. Photoluminescence (Pl) intensity of obtained films by plasma enhanced chemical vapor deposition is increased after annealing at 600 °C which are related to increased concentration of defects as a result of broken Si–H and N–H bonds. Due to the formation of N-centers through the breaking of N–H bonds, annealing at 1100 °C led to sharp decrease in the luminescence intensity 5 and 3 times for SiN1.1 and SiN1.5 samples respectively. Replacement of Si-Si bonds by Si-N enhance Eg with increasing stoichiometric parameter, which leads to blue shift edge of photoluminescence maximum. Carbon implantation of silicon nitride films with extra Si obtained by Plasma Enhanced Chemical Vapor deposition at 1x1014 cm‒2, 2x1015 cm‒2, and 1x1016 cm‒2 fluencies, in combination with prolonged annealing at 1100 °C temperature leads to the formation of additional K-centers.

1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


1995 ◽  
Vol 77 (12) ◽  
pp. 6534-6541 ◽  
Author(s):  
Sadanand V. Deshpande ◽  
Erdogan Gulari ◽  
Steven W. Brown ◽  
Stephen C. Rand

1991 ◽  
Vol 30 (Part 2, No. 4A) ◽  
pp. L619-L621 ◽  
Author(s):  
Nobuaki Watanabe ◽  
Mamoru Yoshida ◽  
Yi-Chao Jiang ◽  
Tutomu Nomoto ◽  
Ichimatsu Abiko

2007 ◽  
Vol 1036 ◽  
Author(s):  
Stephan Warnat ◽  
Markus Hoefer ◽  
Lothar Schaefer ◽  
Helmut Foell ◽  
Peter Lange

AbstractSilicon nitride films were deposited by hot-wire chemical vapor deposition processes (HW-CVD). The films reveal a morphological structure very similar to nitrides formed in low pressure CVD (LP-CVD) or plasma enhanced CVD (PE-CVD) processes. The electrical breakdown voltages, however, are much smaller for HW- than PE- or LPCVD films. The deposition in holes for isolation purpose in “through silicon vias” (TSV) technologies in combination with optical devices, which require very low temperatures (<200 °C), have been investigated. They reveal sufficiently good properties for the planned applications.


2005 ◽  
Vol 872 ◽  
Author(s):  
John M. Maloney ◽  
Sara A. Lipka ◽  
Samuel P. Baldwin

AbstractLow pressure chemical vapor deposition (LPCVD) and plasma enhanced chemical vapor deposition (PECVD) silicon oxide and silicon nitride films were implanted subcutaneously in a rat model to study in vivo behavior of the films. Silicon chips coated with the films of interest were implanted for up to one year, and film thickness was evaluated by spectrophotometry and sectioning. Dissolution rates were estimated to be 0.33 nm/day for LPCVD silicon nitride, 2.0 nm/day for PECVD silicon nitride, and 3.5 nm/day for PECVD silicon oxide. A similar PECVD silicon oxide dissolution rate was observed on a silicon oxide / silicon nitride / silicon oxide stack that was sectioned by focused ion beam etching. These results provide a biostability reference for designing implantable microfabricated devices that feature exposed ceramic films.


1992 ◽  
Vol 284 ◽  
Author(s):  
G. Lucovsky ◽  
Y. Ma ◽  
S. S. He ◽  
T. Yasuda ◽  
D. J. Stephens ◽  
...  

ABSTRACTConditions for depositing quasi-stoichiometric silicon nitride films by low-temperature, remote plasma-enhanced chemical-vapor deposition, RPECVD, have been identified using on-line Auger electron spectroscopy, AES, and off-line optical and infrared, IR, spectroscopies. Quasi-stoichiometric films, by the definition propose in this paper, do not display spectroscopic evidence for Si-Si bonds, but contain bonded-H in Si-H and Si-NH arrangements. Incorporation of RPECVD nitrides into transistor devices has demonstrated that electrical performance is optimized when the films are quasi-stoichiometric with relatively low Si-NH concentrations.


Sign in / Sign up

Export Citation Format

Share Document