scholarly journals Tests of lithium CPS on basis of carboxylic fabric, reinforced with carbon nanotubes under high thermal and radiation loads

2022 ◽  
Vol 2155 (1) ◽  
pp. 012022
Author(s):  
Ye Yu Tulubayev ◽  
Yu V Ponkratov ◽  
V V Baklanov ◽  
V S Bochkov ◽  
I S Karambayeva

Abstract This work is devoted to testing a lithium CPS based on carbon fabric reinforced with carbon nanotubes under conditions of thermal and radiation loads. The paper considers and analyzes: the properties of carbon nanotubes and methods of their synthesis, the nature of the interaction of carbon materials with liquid lithium at different temperatures. A description of all the main stages in the manufacture of lithium CPS based on carbon fabric reinforced with carbon nanotubes is given. Microstructural studies of a manufactured lithium CPS sample based on carbon fabric reinforced with carbon nanotubes are presented. Studies have shown that a carbon fabric with a fiber surface reinforced with carbon nanotubes is completely wetted by liquid lithium. The developed technology is fully suitable for the manufacture of lithium CPS samples for further research. The results of experiments on the interaction of lithium CPS based on graphite fabric reinforced with carbon nanotubes with hydrogen isotopes under thermal and radiation loads are presented.

2015 ◽  
Vol 1084 ◽  
pp. 61-65
Author(s):  
Lyudmila V. Gulidova ◽  
Natalya A. Dubrova ◽  
Andrey M. Lider

The paper presents the theoretical foundations of carbon nanotubes, as well as the methods of the saturation of carbon materials containing nanotubes with hydrogen from the gaseous phase. The dependences of hydrogen storage concentration on the pressure (between 0 and 8 atmospheres) at the same temperature for adsorption (–30 degrees Celsius) and different temperatures for desorption have been obtained. Obviously, at 8 atmospheres the concentration of hydrogen storage varies with the change of the temperature. Particular attention was paid to the influence of the temperature on the rate of desorption.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 234 ◽  
Author(s):  
Urooj Kamran ◽  
Young-Jung Heo ◽  
Ji Won Lee ◽  
Soo-Jin Park

Carbon-based materials, including graphene, single walled carbon nanotubes (SWCNTs), and multi walled carbon nanotubes (MWCNTs), are very promising materials for developing future-generation electronic devices. Their efficient physical, chemical, and electrical properties, such as high conductivity, efficient thermal and electrochemical stability, and high specific surface area, enable them to fulfill the requirements of modern electronic industries. In this review article, we discuss the synthetic methods of different functionalized carbon materials based on graphene oxide (GO), SWCNTs, MWCNTs, carbon fibers (CFs), and activated carbon (AC). Furthermore, we highlight the recent developments and applications of functionalized carbon materials in energy storage devices (supercapacitors), inkjet printing appliances, self-powered automatic sensing devices (biosensors, gas sensors, pressure sensors), and stretchable/flexible wearable electronic devices.


2014 ◽  
Vol 70 (6) ◽  
pp. 964-971
Author(s):  
Xu Chen ◽  
Zhen-hu Xiong

Magnetic multi-wall carbon nanotubes (M-MWCNTs) were used as an adsorbent for removal of furaltadone from aqueous solutions, and the adsorption behaviors were investigated by varying pH, sorbent amount, sorption time and temperature. The results showed that the adsorption efficiency of furaltadone reached 97% when the dosage of M-MWCNT was 0.45 g · L−1, the pH was 7 and the adsorption time was 150 min. The kinetic data showed that the pseudo-second-order model can fit the adsorption kinetics. The sorption data could be well explained by the Langmuir model under different temperatures. The adsorption process was influenced by both intraparticle diffusion and external mass transfer. The experimental data analysis indicated that the electrostatic attraction and π–π stacking interactions between M-MWCNT and furaltadone might be the adsorption mechanism. Thermodynamic analysis reflected that adsorption of furaltadone on the M-MWCNT was spontaneous and exothermic. Our study showed that M-MWCNTs can be used as a potential adsorbent for removal of furaltadone from water and wastewater.


2014 ◽  
Vol 93 ◽  
pp. 164-167 ◽  
Author(s):  
Joon Won Lim ◽  
Atta Ul Haq ◽  
Sang Ouk Kim

Polymer grafting from graphitic carbon materials has been explored for several decades. Currently existing methods mostly employ harsh chemical treatment to generate defect site in graphitic carbon plane, which are used as active site for polymerization of precursors. Unfortunately, the treatment cause serious degradation of chemical structure and material properties. Here, we present a straightforward route for growth of polyaniline chain from nitrogen (N)-sites of carbon nanotubes. N site in the CNT wall initiates the polymerization of aniline monomer, which generates seamless hybrids composed of polyaniline directly grafted onto the CNT walls. The synthesized hybrids show excellent synergistic electrochemical performance, and are employed for electrodes of pseudo-capacitor. This approach offers an efficient way to obtain hybrid system consisting of conducting polymers directly grafted from graphitic dopant sites.


Author(s):  
Justin W. Wilkerson ◽  
Jiang Zhu ◽  
Daniel C. Davis

A multi-scale carbon fiber reinforced polymer nanocomposite laminate, with strategically incorporated fluorine functionalized carbon nanotubes at 0.2 weight percent, is studied for improvements in strength, stiffness and fatigue life under both tension-tension fatigue (R = +0.1) and tension-compression fatigue (R = −0.1) loading. The nanotubes were incorporated into the carbon fabric, and laminates were fabricated using a high temperature vacuum assisted resin transfer molding process. The influence of the fluorinated functionalized carbon nanotubes on the evolution of damage and the resistance to catastrophic failure is credited for these mechanical property improvements.


2015 ◽  
Vol 44 (46) ◽  
pp. 19956-19965 ◽  
Author(s):  
A. S. Bozzi ◽  
R. L. Lavall ◽  
T. E. Souza ◽  
M. C. Pereira ◽  
P. P. de Souza ◽  
...  

In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon.


2000 ◽  
Vol 09 (04) ◽  
pp. 481-503 ◽  
Author(s):  
YA-PING SUN ◽  
JASON E. RIGGS ◽  
KEVIN B. HENBEST ◽  
ROBERT B. MARTIN

Optical limiters based on several different classes of nanomaterials are reviewed. The systems under consideration include metal and semiconductor nanoparticles and nanoscale carbon materials. For the latter, the optical limiting properties of carbon nanoparticles, fullerenes, and suspended and solubilized carbon nanotubes are summarized and compared. Mechanistic implications of the available experimental results are discussed in terms of the comparison between nonlinear scattering versus nonlinear absorption as the dominating optical limiting mechanism for different nanomaterials and for different physico-chemical states of a nanomaterial.


Sign in / Sign up

Export Citation Format

Share Document