scholarly journals Research on the Dynamic Response of Gravity Dam under Blasting Vibration

2022 ◽  
Vol 2160 (1) ◽  
pp. 012058
Author(s):  
Jinzhao Zhuang ◽  
Chang Li ◽  
Bingzhe Zhang ◽  
Yanlong Ren ◽  
Mingzhe Lü

Abstract With the continuous development of blasting technology, it has been widely used in various construction projects. While bringing convenience to construction, it also has a series of negative effects on surrounding buildings (structures), especially the negative effects of blasting vibration on buildings (structures), which has been paid close attention by scholars at home and abroad. For blasting vibration on the dynamic response of the gravity dam to produce, this article adopts the method of numerical simulation, the finite element software ANSYS is applied, the numerical calculation model of concrete gravity dam is established and the dynamic time-history analysis is calculated, in the different blasting conditions, the blasting vibration on the dynamic response of gravity dam is obtained, the calculation and analysis results as basis is supplied for the selection of the blasting vibration monitoring part of the gravity dam.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peng Jiang ◽  
Shaole Yu ◽  
Wei Luan ◽  
Xinxi Chen ◽  
Yang Qin ◽  
...  

The Intercontinental Shanghai Wonderland is the first natural ecological hotel built in an abandoned mine in the world, which faces many difficulties in the construction process. To solve the difficult problems in the construction process, the study was carried out from the stability analysis of the deep pit cliff, the mechanical performance of the structure, and the construction technology. The Intercontinental Shanghai Wonderland is built around the abandoned deep pit cliffs, and the stability of the deep pit cliffs directly affects the safety of the building. The dynamic response characteristics and the instability characteristics of the mine slope under the dynamic response were analyzed by a three-dimensional dynamic finite element method. The calculation results showed that with effective anchoring support measures, the stability coefficient of slope under static load and small earthquakes was large, which had a certain safety margin. Under the action of large earthquakes, the slope could still meet the stability requirements. The structure of the Intercontinental Shanghai Wonderland is a unique two-point support structure system. It shows the deformation and stress characteristics of one fixed end and one simply supported end under horizontal load. The elastic-plastic time history response of structures under actions of rare earthquakes was analyzed through the finite element analysis software. The analysis results show that the current structural system along with the design of component size and strength can meet the seismic performance of the structure under actions of rare earthquakes. The Intercontinental Shanghai Wonderland was built in a stone pit 88 m below the surface. Therefore, the transportation of materials was a difficulty in the construction process. A set of ultradeep concrete downward conveying equipment was invented to solve the difficulty. The construction process of the whole structure was simulated by finite element software, which provided a safety guarantee for the construction of the whole structure.


2014 ◽  
Vol 912-914 ◽  
pp. 1534-1537
Author(s):  
Shao Bo Zhang ◽  
Ke Lun Wei ◽  
Bi Jian Xiao

This paper adopts large finite element software ANSYS to establish finite element model of twin-tower building with enlarged base, uses dynamic time history analysis method for seismic response calculation, compare and analyze the calculation results of twin-tower building with enlarged base under elastic boundary conditions and rigid boundary conditions. The results showe that dynamic response for model under elastic boundary conditions is larger than dynamic response for model under rigid boundary conditions, and elastic boundary conditions is more close to the actual situation.


2014 ◽  
Vol 986-987 ◽  
pp. 887-890 ◽  
Author(s):  
Xiang Sun ◽  
Zong Zhi Yang ◽  
Yun Gang Liu ◽  
Mai Quan Zhang ◽  
Yuan Fei Zhu

Impact load of perforation will result in strong vibration of downhole string, string operated such as bending fracture accidents. Considering the clearance between string and casing, using space beam and spring element to solve the nonlinear contact problems between oil jacket, established the numerical model of string structure dynamic response analysis in horizontal well. Extracting downhole perforation pressure wave monitoring data, using the finite element software ANSYS, analyzed the dynamic response of the tubing under perforation of detonation shock wave impact, got the displacement of the tubing、acceleration time history. The results show that, without packer, the maximum Mises equivalent stress in the end of the string, the deformation and stress changes in deflecting section of the tubing string are bigger than in vertical Wells.


2011 ◽  
Vol 90-93 ◽  
pp. 2301-2306
Author(s):  
Zheng Guo Zhu ◽  
Ming Lei Sun ◽  
Yong Quan Zhu ◽  
Xing Liang Sun

In accordance with characteristics of super-small-distance tunnels in Nanjing metro, the peak value distribution of vibration velocity for existing tunnel was investigated when cut-hole blasted under the conditions of different surrounding rock Grades, followed by dynamic response rule of super-small-distance tunnels blasting. In addition, monitoring emphasis should be placed on upper bench for right tunnel blasting. Therefore, controlled measures of the small-distance tunnels were obtained during construction. Not only is the result fit for the metro tunnel, but it can be as reference for similar engineering.


2014 ◽  
Vol 501-504 ◽  
pp. 1493-1497
Author(s):  
Shu He Wang ◽  
Ji Yuan ◽  
Rui Guo Ma ◽  
Ju Bing Zhang

According to No.3 dam section of Dahuaqiao gravity dam, a three-dimensional finite element model is built by finite element software ANSYS. Mechanics of materials method, response spectrum method and time history analysis method are employed to analyze the strength of the dam section. Results show that the stress of dam toe, dam heel and downstream fold slope are relatively high and stress concentration emerges in those positions. The phenomenon indicates that these areas are vulnerable under the earthquake and precautions must be taken. But under the designed earthquake, the maximum stress of the dam section is below the allowable stress, representing the dam is in a safe state and the strength requirement is satisfied.


Author(s):  
Shakir Y. Haider ◽  
David J. Calhoun

After the 2011 Japan earthquake and tsunami caused significant damage at Fukushima Daiichi, the Nuclear Regulatory Commission required all US nuclear power plants to have a mitigation strategy for beyond design basis events. Industry-developed response plans, called “FLEX” strategies, deployed new, portable equipment such as diesel generators and cooling pumps. As this new equipment needs to be available after a natural disaster, storage in protected locations is required. Many nuclear plants have recently constructed new storage buildings, or FLEX buildings, as part of their post-Fukushima strategy. The equipment door is a critical component of a FLEX building. Large enough to drive a semi-trailer truck through, it is required to protect the equipment in case of an earthquake, flood, tornado and also may need to be capable of opening within a few minutes in order to respond during an emergency. The equipment door presented in this paper serves these purposes very effectively. The composite section of the door is capable of shielding the structure from penetration as well as overall dynamic response from tornado missile impact. The door travels on an overhead rail which, being indoors and above the opening, provides reliable door movement in case of snow or ice during winters or in case of debris from wind or tornado. Latches capable of withstanding tornado missile impact forces also restrain the door in case of wind or seismic forces. The door is opened by means of motorized trollies and is also equipped with a backup opening device by means of an air winch in case of a power loss. The door and the latches that restrain the door from impact are analyzed using ANSYS finite element software. A limit state analysis is performed that identifies the sequence of yield limit states for the components of the door and the door latch as the loading progresses. The analysis continues until the ductility limit state for the latch is reached. Redistribution of stresses within the components of the latch is observed during the analysis. A modal analysis and a direct integration time history analysis is also performed to capture the dynamic response due to impact loading. Overall, this paper presents a highly robust and reliable design for a FLEX building equipment door that is capable of protecting the contents of the building during a natural disaster and remaining operational during the response after an emergency.


2013 ◽  
Vol 405-408 ◽  
pp. 2015-2019 ◽  
Author(s):  
Joanna M. Dulinska ◽  
Anna Galuszka

The paper indicates the role of 3D modeling of concrete gravity dams in evaluation of dynamic response of dams to mining tremors which occur in mining activity regions. 2D and 3D models of a concrete gravity dam were prepared in order to compare two-and three-dimensional analysis of the dynamic response of dam to mining shock. Firstly, values of natural frequencies obtained for 2D and 3D models occurred to be very similar, but only the 3D model allowed to predict the dam behaviour under longitudinal kinematic excitation. Secondly, the comparison of the maximal principal stresses obtained for 2D and 3D models indicates that the simplified 2D analysis underestimates the values of dynamic response on about 20 %. Three-dimensional dynamic analysis allows to assess internal stresses resulting from mining shock more precisely, since the amplitudes of ground vibrations during mining tremors are comparable in three directions.


2019 ◽  
Vol 13 (4) ◽  
pp. 226-232
Author(s):  
Arkadiusz Trąbka

Abstract Forging hammers are machines whose operation causes negative effects both at the place of their foundation (the soil settlement) and in their surroundings (e.g., vibrations propagating to the other devices, noise, etc.). Knowledge of the parameters characterizing the time history of the force that arises as a result of impact of a ram on a shaped material is of fundamental importance for the correct analysis of both the structure of the hammer and its impact on the surroundings. In the paper, the effect of the shape and duration of a pulse load on the dynamic response of a hammer-foundation forging system was assessed. An analytical method of description of the forces that arise as a result of impact of the ram on the forged material, using different forms of pulses was presented. The forces defined in this way as loads in a mathematical model of three degrees of freedom forging system were used. The equations of motion derived from d’Alembert’s principle were solved numerically in the Matlab program. The analyses for eight forms of the pulse loads with the same pulse sizes but different durations were performed. The results in the graphs were presented. It was found, among other things, that a greater impact on the maximum displacement, velocity and acceleration of each component of the hammer-foundation system as well as on the maximum forces transmitted to the soil has the duration of a pulse than its shape.


Sign in / Sign up

Export Citation Format

Share Document