scholarly journals Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds

2013 ◽  
Vol 410 ◽  
pp. 012137 ◽  
Author(s):  
Kaushik Ghosh
2001 ◽  
Vol 16 (08) ◽  
pp. 489-495
Author(s):  
WEIGANG QIU ◽  
JIANJUN XU ◽  
RU-KENG SU ◽  
BIN WANG

Using brick wall model, the first quantum corrections to the extreme Reissner–Nordström black hole entropy due to scalar field as well as electromagnetic field have been calculated. Different quantum entropy values have been obtained for two different kinds of extreme black holes.


2000 ◽  
Vol 15 (28) ◽  
pp. 1739-1747 ◽  
Author(s):  
LI XIANG ◽  
ZHAO ZHENG

We point out that the brick-wall model cannot be applied to the nonstatic black hole. In the case of a static hole, we propose a new model where the black hole entropy is attributed to the dynamical degrees of the field covering the two-dimensional membrane just outside the horizon. A cutoff different from the model of 't Hooft is necessarily introduced. It can be treated as an increase in horizon because of the space–time fluctuations. We also apply our model to the nonequilibrium and nonstatic cases, such as Schwarzschild–de Sitter and Vaidya space–times. In the nonstatic case, the entropy relies on a time-dependent cutoff.


2016 ◽  
Vol 94 (10) ◽  
pp. 1080-1084 ◽  
Author(s):  
Guqiang Li

By using the brick-wall model, the quantum entropies of static spherical black hole surrounded by quintessence due to the Weyl neutrino, electromagnetic, massless Rarita–Schwinger, and gravitational fields for the source-free case are investigated from a generalized uncertainty relation. It is shown that in addition to the usual quadratically and logarithmically divergent terms, there exist additional quadratic, biquadratic, and logarithmic divergences at ultraviolet σ → 0, which not only depend on the black hole characteristics but also on the spins of the fields and the gravity correction factor. These additional terms describe the contribution of the quantum fields to the entropy and the effect of gravitational interactions on it. After the smallest length scale is taken into account, we find that the contribution of the gravitational interactions to the entropy is larger than the usual dominant term and becomes a part of the whole dominant term, so it is very important and cannot be neglected.


2013 ◽  
Vol 28 (07) ◽  
pp. 1350009
Author(s):  
LICHUN ZHANG ◽  
HUAIFAN LI ◽  
REN ZHAO ◽  
RONGGEN CAI

In a dielectric black hole background, photons will be radiated via Hawking evaporation mechanism. In this paper, we calculate the entanglement entropy associated with a static dielectric black hole by employing 't Hooft's brick-wall model. It is found that the lowest energy of radiated particles is coordinate dependent. The resulted entanglement entropy is composed of three parts: a parameter independent leading constant term [Formula: see text], a logarithmic correction term and some series terms. The convergency of the series terms is also discussed.


2002 ◽  
Vol 17 (33) ◽  
pp. 2209-2219
Author(s):  
XIANG LI

The quantum entropies of the black hole, due to the massless Klein–Gordon and Dirac fields, are investigated by Rindler approximation. The difference from the brick wall model is that we take into account the effect of the generalized uncertainty relation on the state counting. The divergence appearing in the brick wall model is removed and the entropies proportional to the horizon area come from the contributions of the modes in the vicinity of the horizon. Here we take the units G=c=ℏ=kB=1.


2003 ◽  
Vol 12 (06) ◽  
pp. 1083-1094 ◽  
Author(s):  
XUEJUN YANG ◽  
YIWEN HAN ◽  
ZHENG ZHAO

The entropy of a rotating and arbitrarily accelerating black hole whose metric changes slowly is calculated using the thin film brick-wall model. We obtain the entropy density at every point of the horizon surface and the total entropy of the black hole. The results show that the entropy of the nonstationary black hole is also proportional to the surface area of the black hole's event horizon as in the cases of stationary black holes.


1999 ◽  
Vol 14 (04) ◽  
pp. 239-246 ◽  
Author(s):  
YOU-GEN SHEN ◽  
DA-MING CHEN

By using 't Hooft's brick wall model, the corrections for a massless quantum scalar field to the black hole entropy are studied in rotating U (1) ⊗ U (1)-dilaton black hole space–time. The free energy and entropy for this case are calculated, and in Hartle–Hawking states, the derived quantum entropy is composed of the geometric part and the non-geometric part which is logrithmically divergent. It turns out that the logrithmic part is related to the characteristic quantities of a black hole.


2003 ◽  
Vol 18 (15) ◽  
pp. 2681-2687 ◽  
Author(s):  
WENBIAO LIU ◽  
YIWEN HAN ◽  
ZHOU'AN ZHOU

Applying the generalized uncertainty relation to the calculation of the free energy and entropy of a black hole inside the brick wall, the entropy proportional to the horizon area is derived from the contribution of the vicinity of the horizon. This is compared with the entropy calculated via the original brick wall model. The entropy given by the original brick wall model comes from the outside of the brick wall seemingly. The inside result using generalized uncertainty relation is similar to the outside result using original uncertainty relation, and the divergence inside the brick wall disappears. It is apparent that the cutoff is something related to the quantum theory of gravity.


Sign in / Sign up

Export Citation Format

Share Document