scholarly journals Effect of quark gluon plasma on charm quark produced in relativistic heavy ion collision

2014 ◽  
Vol 509 ◽  
pp. 012038
Author(s):  
Mohammed Younus ◽  
Dinesh K Srivastava ◽  
Steffen A Bass
2021 ◽  
Vol 19 (2) ◽  
pp. 61-65
Author(s):  
Taghreed A. Younis ◽  
Hadi J.M. Al-Agealy

This work involves hard photon rate production from quark -gluon plasma QGP interaction in heavy ion collision. Using a quantum chromodynamic model to investigate and calculation of photons rate in 𝑐𝑔 → 𝑠𝑔𝛾 system due to strength coupling, photons rate, temperature of system, flavor number and critical. The photons rate production computed using the perturbative strength models for QGP interactions. The strength coupling was function of temperature of system, flavor number and critical temperature. Its influenced by force with temperature of system, its increased with decreased the temperature and vice versa. The strength coupling has used to examine the confinement and deconfinement of quarks in QGP properties and influence on the photon rate production. In our approach, we calculate the photons rate depending on the strength coupling, photons rate and temperature of system with other factors. The results plotted as a function of the photons energy. The photons rate was decreased with increased temperature and increased with decreased with strength coupling.


2000 ◽  
Vol 09 (02) ◽  
pp. 107-147 ◽  
Author(s):  
JEAN LETESSIER ◽  
JOHANN RAFELSKI

We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160–200 A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.


2017 ◽  
Vol 32 (10) ◽  
pp. 1750056
Author(s):  
M. J. Luo

Based on an analogy with topologically ordered new state of matter in condensed matter systems, we propose a low energy effective field theory for a parity conserving liquid-like quark–gluon plasma (QGP) around critical temperature in quantum chromodynamics (QCD) system. It shows that below a QCD gap which is expected several times of the critical temperature, the QGP behaves like topological fluid. Many exotic phenomena of QGP near the critical temperature discovered at Relativistic Heavy Ion Collision (RHIC) are more readily understood by the suggestion that QGP is a topologically ordered state.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050115
Author(s):  
P. K. Sethy ◽  
Yogesh Kumar ◽  
S. Somorendro Singh

It is established that a strong magnetic field is generated along with quark–gluon plasma in heavy-ion collision. This unique scenario offers an opportunity to study and analyze the impact of the magnetic field on the evolution of the plasma. We calculate the dilepton yield from quark–gluon plasma in a magnetic environment by considering a suitably modified magnetized effective quark mass (MEQM). Further, we study the dilepton yield for different values of magnetic field and different values of chemical potential with MEQM. The results obtained are very encouraging and we compare it with recently reported theoretical results.


1998 ◽  
Vol 2 (4) ◽  
pp. 741 ◽  
Author(s):  
Helmar Meier ◽  
Kai Hencken ◽  
Dirk Trautmann ◽  
Gerhard Baur

2010 ◽  
Vol 19 (1/2) ◽  
pp. 32
Author(s):  
Youngil KWON ◽  
Young-Jin KIM ◽  
In-Kwon YOO ◽  
Byungsik HONG

Sign in / Sign up

Export Citation Format

Share Document