scholarly journals Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

2021 ◽  
Vol 16 (11) ◽  
pp. C11007
Author(s):  
N. Chau ◽  
J.P. Athayde Marcondes de André ◽  
V. Van Elewyck ◽  
A. Kouchner ◽  
L. Kalousis ◽  
...  

Abstract The neutrino mass ordering (NMO) is one of the fundamental questions in neutrino physics. KM3NeT/ORCA and JUNO are two neutrino oscillation experiments both aiming at measuring the NMO with different approaches: ORCA with atmospheric neutrinos traversing the Earth and JUNO with reactor neutrinos. This contribution presents the potential of determining the NMO through a combined analysis of JUNO and ORCA data. In a joint fit, the NMO sensitivity is enhanced beyond the simple sum of the sensitivities of each experiment due to the tension between the respective Δm 31 2 best fit values obtained when the wrong ordering is assumed, together with good constraints on this parameter measurement by both experiments. From this analysis, we expect the true NMO to be determined with 5σ significance after 1–2 years of data taking by both experiments for the current global best-fit values of the oscillation parameters, while maximally 6 years will be needed for any other parameter set.

2019 ◽  
Vol 207 ◽  
pp. 04008
Author(s):  
Simon Bourret ◽  
Véronique Van Elewyck

The study of atmospheric neutrinos crossing the Earth can provide tomographic information on the Earth’s interior, complementary to the standard geophysics methods. This contribution presents an updated study of the potential of the KM3NeT-ORCA detector for neutrino oscillation tomography of the Earth, showing that after ten years of operation it can measure the electron density in both the lower mantle and the outer core with a precision of a few percents in the case of normal neutrino mass hierarchy.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1855-1868 ◽  
Author(s):  
ALAN W. P. POON

Over the last several years, experiments have conclusively demonstrated that neutrinos are massive and that they mix. There is now direct evidence for νe s from the Sun transforming into other active flavors while en route to the Earth. The disappearance of reactor [Formula: see text], predicted under the assumption of neutrino oscillation, has also been observed. In this paper, recent results from solar and reactor neutrino experiments and their implications are reviewed. In addition, some of the future experimental endeavors in solar and reactor neutrinos are presented.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1630030
Author(s):  
Manmohan Gupta ◽  
Monika Randhawa ◽  
Mandip Singh

We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.


2000 ◽  
Vol 15 (05) ◽  
pp. 625-650 ◽  
Author(s):  
S. M. BILENKY ◽  
C. GIUNTI ◽  
C. W. KIM

The present status of the problem of neutrino mass, mixing and neutrino oscillations is briefly summarized. The evidence for oscillations of atmospheric neutrinos found recently in the Super-Kamiokande experiment is discussed. Indications in favor of neutrino oscillations obtained in solar neutrino experiments and in the accelerator LSND experiment are also considered. Implications of existing neutrino oscillation data for neutrino masses and mixing are discussed.


2018 ◽  
Vol 33 (02) ◽  
pp. 1850014 ◽  
Author(s):  
Jun-Hao Liu ◽  
Shun Zhou

The possible existence of an eV-mass sterile neutrino, slightly mixing with ordinary active neutrinos, is not yet excluded by neutrino oscillation experiments. Assuming neutrinos to be Majorana particles, we explore the impact of such a sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays [Formula: see text], where [Formula: see text] and [Formula: see text] (for [Formula: see text]) denote respectively the absolute masses and the first-row elements of the [Formula: see text] neutrino flavor mixing matrix [Formula: see text], for which a full parametrization involves three Majorana-type CP-violating phases [Formula: see text]. A zero effective neutrino mass [Formula: see text] is possible, no matter whether three active neutrinos take the normal or inverted mass ordering, and its implications for the parameter space are examined in great detail. In particular, given the best-fit values of [Formula: see text] and [Formula: see text] from the latest global analysis of neutrino oscillation data, a three-dimensional view of [Formula: see text] in the [Formula: see text]-plane is presented and further compared with that of the counterpart [Formula: see text] in the absence of any sterile neutrino.


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
J. P. Yáñez ◽  
A. Kouchner

Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chang Dong Shin ◽  
Kyung Kwang Joo

For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angleθ13, providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements ofθ12,  Δm122, and mass hierarchy will be explored. The precise measurement ofθ13would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package.


2021 ◽  
pp. 2150132
Author(s):  
V. V. Vien

We construct a non-renormalizable [Formula: see text] model based on [Formula: see text] symmetry, whereby, neutrino mass ordering and the tiny neutrino masses are explained at tree level via type I seesaw mechanism. The model can reproduce the recent observed neutrino oscillation data in which neutrino oscillation parameters including three mixing angles [Formula: see text], Dirac CP phase plus neutrino squared-mass splittings [Formula: see text] get the best-fit values for both Normal ordering (NO) and Inverted ordering (IO). The Majorana phases are predicted to be [Formula: see text] for NO, [Formula: see text] for IO and [Formula: see text] for both NH and IO. The sum of neutrino mass and the effective neutrino mass are, respectively, predicted to be [Formula: see text] for NO while [Formula: see text] for IO and [Formula: see text] for NO while [Formula: see text] for IO which are well compatible with the most recent experimental constraints.


Author(s):  
M. G. Aartsen ◽  
M. Ackermann ◽  
J. Adams ◽  
J. A. Aguilar ◽  
M. Ahlers ◽  
...  

AbstractThe Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above $$\sim 1\,\mathrm {GeV}$$∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of $$p_\mathrm {IO} = 15.3\%$$pIO=15.3% and $$\mathrm {CL}_\mathrm {s}=53.3\%$$CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of $$\delta _\mathrm {CP}$$δCP and obtained from energies $$E_\nu \gtrsim 5\,\mathrm {GeV}$$Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.


2002 ◽  
Vol 17 (24) ◽  
pp. 3364-3377 ◽  
Author(s):  
◽  
C. K. JUNG

K2K is a long baseline neutrino oscillation experiment using a neutrino beam produced at the KEK 12 GeV PS, a near detector complex at KEK and a far detector (Super-Kamiokande) in Kamioka, Japan. The experiment was constructed and is being operated by an international consortium of institutions from Japan, Korea, and the US. The experiment started taking data in 1999 and has successfully taken data for about two years. K2K is the first long beseline neutrino oscillation experiment with a baseline of order hundreds of km and is the first accelerator based neutrino oscillation experiment that is sensitive to the Super-Kamiokande allowed region obtained from the atmospheric neutrino oscillation analysis. A total of 44 events have been observed in the far detector during the period of June 1999 to April 2001 corresponding to 3.85 × 1019 protons on target. The observation is consistent with the neutrino oscillation expectations based on the oscillation parameters derived from the atmospheric neutrinos, and the probability that this is a statistical fluctuation of non-oscillation expectation of [Formula: see text] is less than 3%.


Sign in / Sign up

Export Citation Format

Share Document