Prototype characterization of a charge-integration pixel detector readout chip with in-pixel A/D conversion

2022 ◽  
Vol 17 (01) ◽  
pp. P01003
Author(s):  
M. Li ◽  
W. Wei ◽  
X. Jiang ◽  
S. Cui ◽  
J. Zhang ◽  
...  

Abstract HYLITE (High dYmamic range free electron Laser Imaging deTEctor) is a hybrid pixel detector readout chip, which is designed for advanced light sources such as X-ray Free Electron Laser (XFEL) and diffraction-limited storage rings. It is a charge-integration readout chip which has three gains for different dynamic ranges and automatic gain-switching function. The full dynamic range covered by HYLITE is 1 ∼ 104 photons with an energy of 12 keV for each pixel in every shot. In-pixel ADC is designed to achieve front-end digitization and a 10 kHz continuous frame rate. HYLITE0.1 is the first prototype chip for functional verification that was produced in CMOS 0.13 μm technology. It consists of a pixel array with 6 × 12 pixels and a periphery with full standalone operation features. The size of each pixel is 200 μm × 200 μm. Three design variations of pixels with different integrating capacitance and structures were designed to optimize between area and performance. A 10-bit Wilkinson ADC is integrated in each pixel to digitize the outputs of the pre-amplifier. Therefore, analog signal transmission of long distance is avoided and a frame rate of 10 kHz can be achieved. In this paper, we present the design of HYLITE0.1 and the test results of this prototype chip.

2017 ◽  
Vol 12 (12) ◽  
pp. P12003-P12003 ◽  
Author(s):  
M.C. Veale ◽  
P. Adkin ◽  
P. Booker ◽  
J. Coughlan ◽  
M.J. French ◽  
...  

2022 ◽  
Vol 17 (01) ◽  
pp. C01020
Author(s):  
E. Fröjdh ◽  
J.P. Abrahams ◽  
M. Andrä ◽  
R. Barten ◽  
A. Bergamaschi ◽  
...  

Abstract Speed, dynamic range, and radiation hardness make hybrid pixel detectors suitable image detectors for diffraction experiments. At synchrotrons and X-ray free electron lasers they are ubiquitous. However, for electron microscopy their spatial resolution is limited by multiple scattering in the sensor layer. In this paper we examine the use of two high Z sensor materials: CdTe and GaAs, as a way to mitigate this problem. The sensors were bonded to a JUNGFRAU readout chip which is a charge integrating hybrid pixel detector developed for use at X-ray free electron lasers. Using in-pixel gain switching, it can detect single particles down to 2 keV while maintaining a dynamic range of 120 MeV/pixel/frame. The characteristics of JUNGFRAU, besides being a capable detector, make it a good tool for sensor characterization since we can measure dark current and energy deposition per pixel. The high Z material shows better spatial resolution than silicon at 200 and 300 keV, however, their practical use with integrating detectors is still limited by material defects.


2017 ◽  
Vol 24 (5) ◽  
pp. 963-974 ◽  
Author(s):  
G. Tinti ◽  
H. Marchetto ◽  
C. A. F. Vaz ◽  
A. Kleibert ◽  
M. Andrä ◽  
...  

EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8–20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.


2014 ◽  
Vol 85 (3) ◽  
pp. 033110 ◽  
Author(s):  
Takashi Kameshima ◽  
Shun Ono ◽  
Togo Kudo ◽  
Kyosuke Ozaki ◽  
Yoichi Kirihara ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
H. Lu ◽  
A. Gauthier ◽  
M. Hepting ◽  
A. S. Tremsin ◽  
A. H. Reid ◽  
...  

AbstractTime-resolved resonant inelastic X-ray scattering (RIXS) is one of the developing techniques enabled by the advent of X-ray free electron laser (FEL). It is important to evaluate how the FEL jitter, which is inherent in the self-amplified spontaneous emission process, influences the RIXS measurement. Here, we use a microchannel plate (MCP) based Timepix soft X-ray detector to conduct a time-resolved RIXS measurement at the Ti L3-edge on a charge-density-wave material TiSe2. The fast parallel Timepix readout and single photon sensitivity enable pulse-by-pulse data acquisition and analysis. Due to the FEL jitter, low detection efficiency of spectrometer, and low quantum yield of RIXS process, we find that less than 2% of the X-ray FEL pulses produce signals, preventing acquiring sufficient data statistics while maintaining temporal and energy resolution in this measurement. These limitations can be mitigated by using future X-ray FELs with high repetition rates, approaching MHz such as the European XFEL in Germany and LCLS-II in the USA, as well as by utilizing advanced detectors, such as the prototype used in this study.


2019 ◽  
Vol 26 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Aschkan Allahgholi ◽  
Julian Becker ◽  
Annette Delfs ◽  
Roberto Dinapoli ◽  
Peter Goettlicher ◽  
...  

The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.


1983 ◽  
Vol 44 (C1) ◽  
pp. C1-385-C1-385
Author(s):  
E. D. Shaw ◽  
R. M. Emanuelson ◽  
G. A. Herbster

1983 ◽  
Vol 44 (C1) ◽  
pp. C1-367-C1-367
Author(s):  
W. Becker ◽  
J. K. McIver

Sign in / Sign up

Export Citation Format

Share Document