scholarly journals 3D cosmic-ray muon tomography using portable muography detector

2022 ◽  
Vol 17 (01) ◽  
pp. P01009
Author(s):  
K. Chaiwongkhot ◽  
T. Kin ◽  
Y. Nagata ◽  
T. Komori ◽  
N. Okamoto ◽  
...  

Abstract A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The detector consists of two muon position-sensitive detectors, made of plastic scintillating fibers (PSFs) and multi-pixel photon counters (MPPCs) with an angular resolution of 8 msr. In this work, the maximum likelihood-expectation maximization (ML-EM) method was used for the 3D imaging reconstruction of the muography. For both simulation and experiment, the reconstructed positions of the blocks produce consistent results with prior knowledge of the blocks' arrangement. This result demonstrates the potential of the 3D tomographic imaging of infrastructure by using seven detection positions for portable muography detectors to image infrastructure scale targets.

Author(s):  
T. F. Kelly ◽  
P. P. Camus ◽  
D. J. Larson ◽  
L. M. Holzman

Atom probe microscopy, which is based on the first ever atomic-scale imaging technique, field ion microscopy (FIM), has entered a new era in its development. Three-dimensional atom probes (3DAP) are now operating which produce 3D images with atomic scale resolution. It appears that the technology will soon be at hand to make 3DAPs do everything that their predecessor, the conventional atom probe, now does and also reach the third dimension. These microscopes will be simpler, smaller, faster, and much more powerful than the conventional atom probe. Several developments are responsible for this suggestion. 1) Rapid pulsing schemes are being developed which will make it possible to achieve on the order of 106 pulses per second. 2) Highspeed position-sensitive detectors (PSDs) have been designed which can detect several ions in a givenpulse with very high precision. 3) New specimen geometries will soon become possible which will revolutionize the atom probe. Let us consider the ramifications of each of these developments in turn.


Author(s):  
Doug Schouten

Muon attenuation in matter can be used to infer the average material density along the path length of muons underground. By mapping the intensity of cosmic ray muons with an underground sensor, a radiographic image of the overburden above the sensor can be derived. Multiple such images can be combined to reconstruct a three-dimensional density model of the subsurface. This article summarizes selected case studies in applying muon tomography to mineral exploration, which we call muon geotomography. This article is part of the Theo Murphy meeting issue ‘Cosmic-ray muography’.


1998 ◽  
Vol 4 (S2) ◽  
pp. 80-81
Author(s):  
M. K. Miller

In a three dimensional atom probe, the identity and spatial coordinates of the atoms field evaporated from the specimen are determined. Their identity is calculated from the flight time from the specimen to the single atom detector. The x and y coordinates of the atom in the specimen are determined from the coordinates of its impact position on the position-sensitive detector and the z coordinate is determined from its position in the evaporation sequence. These data may then be reconstructed to visualize and quantify the distribution of all the elements in the specimen. Several types of position-sensitive detectors have been used including a wedge-and-strip detector (position-sensitive atom probe), a 10 by 10 array of anodes (tomographic atom probe), and a gateable CCD camera (optical atom probe). The wedge-and strip and the CCD camera detectors both suffer from the limitation that if more than one atom strikes the detector on a field evaporation pulse then the impact positions cannot be determined in many cases.


1995 ◽  
Vol 377 ◽  
Author(s):  
R. Martins ◽  
G. Lavareda ◽  
F. Soares ◽  
E. Fortunato

ABSTRACTThe aim of this work is to provide the basis for the interpretation of the steady state lateral photoeffect observed in p-i-n a-Si:H ID Thin Film Position Sensitive Detectors (ID TFPSD). The experimental data recorded in ID TFPSD devices with different performances are compared with the predicted curves and the obtained correlation's discussed.


2014 ◽  
Vol 68 (2) ◽  
pp. 21301 ◽  
Author(s):  
Omeime Xerviar Esebamen ◽  
Göran Thungström ◽  
Hans-Erik Nilsson ◽  
Anders Lundgren

2019 ◽  
Vol 40 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Lanzhong Hao ◽  
Hanyang Xu ◽  
Shichang Dong ◽  
Yongjun Du ◽  
Li Luo ◽  
...  

1978 ◽  
Vol 10 (4) ◽  
pp. 730-735
Author(s):  
H. S. Green

The theoretical analyses of the extensive air showers developing from the cosmic radiation has its origins in the work of Carlson and Oppenheimer (1937) and Bhabha and Heitler (1937), at a time when it was thought that such showers were initiated by electrons. The realization that protons and other nuclei were the primary particles led to a reformulation of the theory by Heitler and Janossy (1949), Messel and Green (1952) and others, in which the production of energetic pions and the three-dimensional development of air showers were accounted for. But as the soft (electromagnetic) component of the cosmic radiation is the most prominent feature of air showers at sea level, there has been a sustained interest in the theory of this component. Most of the more recent work, such as that by Butcher and Messel (1960) and Thielheim and Zöllner (1972) has relied on computer simulation; but this method has disadvantages in terms of accuracy and presentation of results, especially where a simultaneous analysis of the development of air showers in terms of several physical variables is required. This is so for instance when the time of arrival is one of the variables. Moyal (1956) played an important part in the analytical formulation of a stochastic theory of cosmic ray showers, with time as an explicit variable, and it is essentially this approach which will be adopted in the following. The actual distribution of arrival times is cosmic ray showers, for which results are obtained, is of current experimental interest (McDonald, Clay and Prescott (1977)).


Sign in / Sign up

Export Citation Format

Share Document