Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line

2015 ◽  
Vol 10 (2) ◽  
pp. 025002 ◽  
Author(s):  
Levi DeVries ◽  
Francis D Lagor ◽  
Hong Lei ◽  
Xiaobo Tan ◽  
Derek A Paley
2012 ◽  
Vol 443-444 ◽  
pp. 548-552
Author(s):  
Liang Liu ◽  
Yu Yi Zhai ◽  
Wen Jie Lu ◽  
Huan Xin Luo ◽  
Yu Li

In this paper, the speed control system controlled by motor speed was designed to control forward speed of underwater robot precisely. Based on the theory of double closed-loop speed control, motor control system was modeled firstly, and then regulator parameters were designed based on the engineering approaches. According to the characteristics of forward movement, the mechanical construction of sub-mini underwater robots and the comparison of various system designs, the double closed-loop regulator parameters of sub-mini underwater robots were obtained. And the propulsion system of sub-mini underwater robots was equipped with speed and current double closed-loop control. All the experimental results showed that within a certain range of motor speed, no static error could be guaranteed and the variable speed of underwater vehicle could be achieved.


2013 ◽  
Vol 313-314 ◽  
pp. 1064-1068
Author(s):  
Peng Hua Teng ◽  
Yu Wen Zhang ◽  
Er Hu Hou

The autonomous underwater vehicle can be affected by sea flow and other factors when in a motion to a certain fixed depth. To guarantee the stability of cruise trajectory of autonomous underwater vehicle and considering the influence of sea flow on its motion, the underwater six-free-degree motion mathematical model for the vehicle is established in combination with the sea flow model. Besides, dynamic features of the longitudinal plane, horizontal plane and crosswise-rolling of the vehicle at different navigation speeds are simulated with the three-channel closed-loop control system. The simulation result indicates that the vehicle can move stably at a certain depth and with the achieved accuracy by means of closed-loop control.


2009 ◽  
Vol 87 (8) ◽  
pp. 671-683 ◽  
Author(s):  
A. Ayali ◽  
S. Gelman ◽  
E. D. Tytell ◽  
A. H. Cohen

The lateral-line system is common to most aquatic organisms. It plays an important role in behaviours involving detection of other animals and obstacles. In gnathostome fishes, these behaviours appear to be dependent on an efferent inhibitory system that filters out stimuli caused by the animal’s own movement. Sea lampreys ( Petromyzon marinus L., 1758), the most basal extant vertebrate, possess a functional lateral-line system. Yet they completely lack the inhibitory efferent system. Thus, they may use the lateral line to sense their own swimming movements, helping to stabilize swimming. To test this hypothesis, we first investigated the kinematics of free-swimming lampreys. In an intact tethered preparation, we then generated undualatory body motions of comparable amplitude and frequency to swimming, while monitoring the evoked responses of the posterior lateral-line nerve. Last, we tested the effect of eliminating lateral-line inputs by cobalt treatment. In the tethered preparation, we recorded distinctive and consistent activity in the lateral-line nerve that was strongly dependent on characteristics of the motion. We found that distinct characteristics of the rhythmic movements are encoded in the temporal characteristics of the response. Swimming kinematics of cobalt-treated animals differed from controls, suggesting a complex, yet necessary role of the lateral-line system in closed-loop control of swimming.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 118-LB
Author(s):  
CAROL J. LEVY ◽  
GRENYE OMALLEY ◽  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
YOGISH C. KUDVA ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
BRUCE A. BUCKINGHAM ◽  
YOGISH C. KUDVA ◽  
LORI M. LAFFEL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document