scholarly journals A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic

2018 ◽  
Vol 13 (11) ◽  
pp. 115001 ◽  
Author(s):  
Benjamin M Jones ◽  
Louise M Farquharson ◽  
Carson A Baughman ◽  
Richard M Buzard ◽  
Christopher D Arp ◽  
...  
2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


2015 ◽  
Vol 72 (9) ◽  
pp. 2532-2538 ◽  
Author(s):  
Øystein Varpe ◽  
Malin Daase ◽  
Trond Kristiansen

Abstract A gigantic light experiment is taking place in the Arctic. Climate change has led to substantial reductions in sea ice extent and thickness in the Arctic Ocean. Sea ice, particularly when snow covered, acts as a lid hindering light to reach the waters underneath. Less ice will therefore mean more light entering the water column, with profound effects on pelagic and benthic ecosystems. Responses through primary production are so far well acknowledged. Here we argue that there is a need to broaden the view to include light-driven effects on fish, as they depend on light to locate prey. We used the Norwegian Earth System Model estimates of past and future sea ice area and thickness in the Arctic and applied attenuation coefficients for ice and snow to estimate light intensity. The results show a dramatic increase in the amount of light predicted to reach the future Arctic Ocean. We combined this insight with mechanistic understanding of how light modulates visual prey-detection and predict that fish will forage more efficiently as sea ice diminishes and that their populations will expand to higher latitudes, at least seasonally. Poleward shifts of boreal fish species have been predicted by many and to some extent observed, but a changing light environment has so far not been considered a driver. Expanding distributions and greater visual predation may restructure ecological relationships throughout the Arctic foodweb and lead to regime shifts. Research efforts should focus on the dynamics of how less sea ice will affect the feeding ecology and habitat usage of fish, particularly the northern limits of distributions. Mechanistic approaches to these topics offer insights beyond statistical correlations and extrapolations, and will help us understand how changing biophysical dynamics in the Arctic influence complex processes including production, predator–prey interactions, trait-evolution, and fisheries.


2013 ◽  
Vol 110 ◽  
pp. 107-125 ◽  
Author(s):  
Victoria J. Hill ◽  
Patricia A. Matrai ◽  
Elise Olson ◽  
S. Suttles ◽  
Mike Steele ◽  
...  

2018 ◽  
Author(s):  
David Romero Manrique ◽  
Serafin Corral ◽  
Ângela Guimarães Pereira

Climate change impacts lead to alterations in migration patterns and the displacement of exposed native com- munities and peoples in the Arctic region, forcing them to leave their homes and traditional ways of life as a result of rapid local ecological changes. This paper illustrates climate-related displacements and subsequent relocation as extremely complex processes, and proposes traditional knowledge as a relevant source of knowl- edge both at local level and policy making spheres.The main conclusions are that the representation of indigenous peoples in international governance structures does not guarantee that traditional knowledge is entirely engaged in evidence-based policy making and that traditional knowledge is not always valued as an equal source of knowledge by some relevant scientific bodies. In this context, changing the approach towards a knowledge-systems-based framework would contribute to the development of more concrete policies and strategies for adaptation of Arctic native communities.


2018 ◽  
Vol 10 (11) ◽  
pp. 1772 ◽  
Author(s):  
Estrella Olmedo ◽  
Carolina Gabarró ◽  
Verónica González-Gambau ◽  
Justino Martínez ◽  
Joaquim Ballabrera-Poy ◽  
...  

This paper aims to present and assess the quality of seven years (2011–2017) of 25 km nine-day Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) objectively analyzed maps in the Arctic and sub-Arctic oceans ( 50 ∘ N– 90 ∘ N). The SMOS SSS maps presented in this work are an improved version of the preliminary three-year dataset generated and freely distributed by the Barcelona Expert Center. In this new version, a time-dependent bias correction has been applied to mitigate the seasonal bias that affected the previous SSS maps. An extensive database of in situ data (Argo floats and thermosalinograph measurements) has been used for assessing the accuracy of this product. The standard deviation of the difference between the new SMOS SSS maps and Argo SSS ranges from 0.25 and 0.35. The major features of the inter-annual SSS variations observed by the thermosalinographs are also captured by the SMOS SSS maps. However, the validation in some regions of the Arctic Ocean has not been feasible because of the lack of in situ data. In those regions, qualitative comparisons with SSS provided by models and the remotely sensed SSS provided by Aquarius and SMAP have been performed. Despite the differences between SMOS and SMAP, both datasets show consistent SSS variations with respect to the model and the river discharge in situ data, but present a larger dynamic range than that of the model. This result suggests that, in those regions, the use of the remotely sensed SSS may help to improve the models.


1999 ◽  
Vol 71 (7) ◽  
pp. 1359-1383 ◽  
Author(s):  
J. B. Unsworth ◽  
R. D. Wauchope ◽  
A-W. Klein ◽  
E. Dorn ◽  
B. Zeeh ◽  
...  

Synopsis:Since the 1960’s there has been a growing body of data regarding the presence of pesticides in the atmosphere. The monitoring results obtained show that traces of pesticides may undergo long range transport and be deposited considerable distances away from the treatment areas, including remote areas such as the Arctic and Antarctic regions. Pesticides have been found in air, rain, cloud water, fog and snow. The appearance and subsequent behaviour of pesticides in the atmosphere are complex processes and the concentrations found depend on several variables such as their volatility, photostability, method of application and extent of use. Whilst volatility of pesticides can be linked to their Henry’s Law constant this is very much a simplification since it is also influenced by the surfaces treated, e.g. soil or leaves, and by the extent to which aerosols are formed during the application. The disappearance of pesticides from the atmosphere is due to hydrolysis, indirect photolysis via OH. radicals and to deposition in rain. Pesticides which are resistant to hydrolysis and photolysis can be transported over great distances, for example, organochlorine insecticides have been detected in the Arctic regions. In general, concentrations in rainwater are, when detected, in the low or sub mg/l range and highest concentrations are found during the time of application. The use of fugacity models has been shown to be a useful approach to predict concentrations in air. Under most conditions the presence of pesticides in air, or rainwater, has no significant effects on non-target systems, including direct and indirect effects. Exceptions to this are damage by auxin-type herbicides to sensitive plants which has resulted on restrictions in their use in certain areas and transient chlorotic spotting thought to be caused by drift of aerosols from application of low rate sulfonyl urea herbicides. For animal species one possible exception has been postulated. This is for persistent organochlorine pesticides in Arctic regions where, due to the very oligotrophic nature of the Arctic ocean, they are more liable to bioaccumulate and be transported in the food web giving enhanced levels in mothers’ milk.


2018 ◽  
Vol 9 (2) ◽  
pp. 141-156
Author(s):  
Eivind V. Thrane

Abstract. Just 5 years after Sputnik, on 18 August 1962, Norway launched the first sounding rocket from Andøya in northern Norway. The establishment of Andøya Rocket Range (ARR), in the Arctic and right in the middle of the night-time auroral zone, gave the scientists unique opportunities for studies of the complex processes in the auroral ionosphere and upper atmosphere. In close cooperation with the users, ARR gradually developed its technical and scientific infrastructure and is now one of the world's leading observatories in this field. ARR has also established a launch site at Svalbard, and sounding rockets from both ranges can reach far into the Arctic to study the cusp region and the daytime aurora. The ground-based instruments comprise sophisticated radars and lidars as well as passive instruments. ARR also plays an active role in space education. In 2014 Andøya Rocket Range changed its name to Andøya Space Center (ASC; https://www.andoyaspace.no, last access: 23 November 2018). This change reflects the fact that the activities now comprise much more than sounding rocket launches. ASC is an important company both nationally and in the local community of Andenes. ASC now has a staff of 95 and an annual turnover of NOK 150 million.


2018 ◽  
Author(s):  
David Romero Manrique ◽  
Serafin Corral ◽  
Ângela Guimarães Pereira

Climate change impacts lead to alterations in migration patterns and the displacement of exposed native communities and peoples in the Arctic region, forcing them to leave their homes and traditional ways of life as a result of rapid local ecological changes. This paper illustrates climate-related displacements and subsequent relocation as extremely complex processes, and proposes traditional knowledge as a relevant source of knowledge both at local level and policy making spheres.The main conclusions are that the representation of indigenous peoples in international governance structures does not guarantee that traditional knowledge is entirely engaged in evidence-based policy making and that traditional knowledge is not always valued as an equal source of knowledge by some relevant scientific bodies. In this context, changing the approach towards a knowledge-systems-based framework would contribute to the development of more concrete policies and strategies for adaptation of Arctic native communities.


2020 ◽  
Vol 12 (18) ◽  
pp. 2880
Author(s):  
Shuang Liang ◽  
Jiangyuan Zeng ◽  
Zhen Li ◽  
Dejing Qiao ◽  
Ping Zhang ◽  
...  

Sea ice concentration (SIC) plays a significant role in climate change research and ship’s navigation in polar regions. Satellite-based SIC products have become increasingly abundant in recent years; however, the uncertainty of these products still exists and needs to be further investigated. To comprehensively evaluate the consistency of the SIC derived from different SIC algorithms in long time series and the whole polar regions, we compared four passive microwave (PM) satellite SIC products with the ERA-Interim sea ice fraction dataset during the period of 2015–2018. The PM SIC products include the SSMIS/ASI, AMSR2/BT, the Chinese FY3B/NT2, and FY3C/NT2. The results show that the remotely sensed SIC products derived from different SIC algorithms are generally in good consistency. The spatial and temporal distribution of discrepancy among satellite SIC products for both Arctic and Antarctic regions are also observed. The most noticeable difference for all the four SIC products mostly occurs in summer and at the marginal ice zone, indicating that large uncertainties exist in satellite SIC products in such period and areas. The SSMIS/ASI and AMSR2/BT show relatively better consistency with ERA-Interim in the Arctic and Antarctic, respectively, but they exhibit opposite bias (dry/wet) relative to the ERA-Interim data. The sea ice extent (SIE) and sea ice area (SIA) derived from PM and ERA-Interim SIC were also compared. It is found that the difference of PM SIE and SIA varies seasonally, which is in line with that of PM SIC, and the discrepancy between PM and ERA-Interim data is larger in Arctic than in Antarctic. We also noticed that different algorithms have different performances in different regions and periods; therefore, the hybrid of multiple algorithms is a promising way to improve the accuracy of SIC retrievals. It is expected that our findings can contribute to improving the satellite SIC algorithms and thus promote the application of these useful products in global climate change studies.


2014 ◽  
Vol 6 (10) ◽  
pp. 9170-9193 ◽  
Author(s):  
Shengan Zhan ◽  
Richard Beck ◽  
Kenneth Hinkel ◽  
Hongxing Liu ◽  
Benjamin Jones

Sign in / Sign up

Export Citation Format

Share Document