indirect photolysis
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 0)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7277
Author(s):  
Alexandra Raschitor ◽  
Alberto Romero ◽  
Sandra Sanches ◽  
Vanessa J. Pereira ◽  
Joao G. Crespo ◽  
...  

Along with rapid social development, the use of insecticides and caffeine-containing products increases, a trend that is also reflected in the composition of surface waters. This study is focused on the phototreatment of a surface water containing three neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and caffeine. Firstly, the radiation absorption of the target pollutants and the effect of the water matrix components were evaluated. It was observed that the maximum absorption peaks appear at wavelengths ranging from 246 to 274 nm, and that the water matrix did not affect the efficiency of the removal of the target pollutants. It was found that the insecticides were efficiently removed after a very short exposure to UV irradiation, while the addition of hydrogen peroxide was needed for an efficient caffeine depletion. The electrical energy per order was estimated, being the lowest energy required (9.5 kWh m−3 order−1) for the depletion of thiamethoxan by indirect photolysis, and a concentration of hydrogen peroxide of 5 mg dm−3. Finally, a preliminary evaluation on the formation of by-products reveals that these compounds play a key role in the evolution of the ecotoxicity of the samples, and that the application of direct photolysis reduces the concentration of these intermediates.



Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5960
Author(s):  
Oran Fradkin ◽  
Hadas Mamane ◽  
Aviv Kaplan ◽  
Ofir Menashe ◽  
Eyal Kurzbaum ◽  
...  

Degradation of 17α-ethynylestradiol (EE2) and estrogenicity were examined in a novel oxidative bioreactor (OBR) that combines small bioreactor platform (SBP) capsules and UV-LED (ultraviolet light emission diode) simultaneously, using enriched water and secondary effluent. Preliminary experiments examined three UV-LED wavelengths—267, 279, and 286 nm, with (indirect photolysis) and without (direct photolysis) H2O2. The major degradation wavelength for both direct and indirect photolysis was 279 nm, while the major removal gap for direct vs. indirect degradation was at 267 nm. Reduction of EE2 was observed together with reduction of estrogenicity and mineralization, indicating that the EE2 degradation products are not estrogens. Furthermore, slight mineralization occurred with direct photolysis and more significant mineralization with the indirect process. The physical–biological OBR process showed major improvement over other processes studied here, at a very short hydraulic retention time. The OBR can feasibly replace the advanced oxidation process of UV-LED radiation with catalyst in secondary sedimentation tanks with respect to reduction ratio, and with no residual H2O2. Further research into this OBR system is warranted, not only for EE2 degradation, but also to determine its capabilities for degrading mixtures of pharmaceuticals and pesticides, both of which have a significant impact on the environment and public health.



Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5331
Author(s):  
Cristina Jiménez-Holgado ◽  
Paola Calza ◽  
Debora Fabbri ◽  
Federica Dal Bello ◽  
Claudio Medana ◽  
...  

This study investigated the direct and indirect photochemical degradation of citalopram (CIT), a selective serotonin reuptake inhibitor (SSRI), under natural and artificial solar radiation. Experiments were conducted in a variety of different operating conditions including Milli-Q (MQ) water and natural waters (lake water and municipal WWT effluent), as well as in the presence of natural water constituents (organic matter, nitrate and bicarbonate). Results showed that indirect photolysis can be an important degradation process in the aquatic environment since citalopram photo-transformation in the natural waters was accelerated in comparison to MQ water both under natural and simulated solar irradiation. In addition, to investigate the decontamination of water from citalopram, TiO2-mediated photocatalytic degradation was carried out and the attention was given to mineralization and toxicity evaluation together with the identification of by-products. The photocatalytic process gave rise to the formation of transformation products, and 11 of them were identified by HPLC-HRMS, whereas the complete mineralization was almost achieved after 5 h of irradiation. The assessment of toxicity of the treated solutions was performed by Microtox bioassay (Vibrio fischeri) and in silico tests showing that citalopram photo-transformation involved the formation of harmful compounds.



Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4016
Author(s):  
Yael Gilboa ◽  
Yuval Alfiya ◽  
Sara Sabach ◽  
Eran Friedler ◽  
Yael Dubowski

Sulfide species may be present in groundwater due to natural processes or due to anthropogenic activity. H2S contamination poses odor nuisance and may also lead to adverse health effects. Advanced oxidation processes (AOPs) are considered promising treatments for hydrogen-sulfide removal from water, but conventional AOPs usually require continuous chemical dosing, as well as post-treatment, when solid catalysts are applied. Vacuum-UV (VUV) radiation can generate ·OH in situ via water photolysis, initiating chemical-free AOP. The present study investigated the applicability of VUV-based AOP for removal of H2S both in synthetic solutions and in real groundwater, comparing combined UV-C/VUV and UV-C only radiation in a continuous-flow reactor. In deionized water, H2S degradation was much faster under the combined radiation, dominated by indirect photolysis, and indicated the formation of sulfite intermediates that convert to sulfate at high radiation doses. Sulfide was efficiently removed from natural groundwater by the two examined lamps, with no clear preference between them. However, in anoxic conditions, common in sulfide-containing groundwater, a small advantage for the combined lamp was observed. These results demonstrate the potential of utilizing VUV-based AOP for treating H2S contamination in groundwater as a chemical-free treatment, which can be especially attractive to remote small treatment facilities.



2021 ◽  
Author(s):  
Jizhong Meng ◽  
Arong Arong ◽  
Shoujun Yuan ◽  
Wei Wang ◽  
Juliang Jin ◽  
...  

Abstract Roxarsone (ROX) is an organoarsenic feed additive, and can be discharged into aquatic environment. ROX can photodegrade into more toxic inorganic arsenics, causing arsenic pollution. However, the photodegradation behavior of ROX in aquatic environment is still unclear. To better understand ROX photodegradation behavior, this study investigated the ROX photodegradation mechanism and influencing factors, and modeled the photodegradation process. The results showed that ROX in the aquatic environment was degraded to inorganic As(III) and As(V) under light irradiation. The degradation efficiency was enhanced by 25 % with the increase of light intensity from 300 µW/cm2 to 800 µW/cm2 via indirect photolysis. The photodegradation was temperature dependence, but was only slightly affected by pH. Nitrate ion (NO3−) had an obvious influence, but sulfate, carbonate, and chlorate ions had a negligible effect on ROX degradation. Dissolved organic matter (DOM) in the solution inhibited the photodegradation. ROX photodegradation was mainly mediated by reactive oxygen species (in the form of single oxygen 1O2) generated through ROX self-sensitization under irradiation. Based on the data of factors affecting ROX photodegradation, ROX photodegradation model was built and trained by an artificial neural network (ANN), and the predicted degradation rate was in good agreement with the real values with a root mean square error of 1.008. This study improved the understanding of ROX photodegradation behavior and provided a basis for controlling the pollution from ROX photodegradation.



Author(s):  
Yueyue Li ◽  
Lixiao Wang ◽  
Haiyan Xu ◽  
Junhe Lu ◽  
JM CHOVELON ◽  
...  

UV254 photolysis has increasingly been utilized for disinfection of water-born pathogens in wastewater. During disinfection, wastewater-derived trace organic contaminants, such as pharmaceuticals and personal care products (PPCPs), may be subjected...



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dimitra Papagiannaki ◽  
Claudio Medana ◽  
Rita Binetti ◽  
Paola Calza ◽  
Peter Roslev

AbstractThe active herbicide ingredient glyphosate [N-(phosphonomethyl)glycine] is frequently detected as a contaminant in groundwater and surface waters. This study investigated effects of UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm) irradiation of glyphosate in water on photolysis and toxicity to aquatic organisms from different trophic levels. A test battery with bacteria (Bacillus subtilis, Aliivibrio fischeri), a green microalga (Raphidocelis subcapitata), and a crustacean (Daphnia magna) was used to assess biological effect of glyphosate and bioactive transformation products before and after UV irradiation (4.7–70 J/cm2). UV-C irradiation at 20 J/cm2 resulted in a 2–23-fold decrease in toxicity of glyphosate to aquatic test organisms. UV-B irradiation at 70 J/cm2 caused a twofold decrease whereas UV-A did not affect glyphosate toxicity at doses ≤ 70 J/cm2. UV-C irradiation of glyphosate in drinking water and groundwater with naturally occurring organic and inorganic constituents showed comparable or greater reduction in toxicity compared to irradiation in deionized water. High-resolution mass spectrometry analyses of samples after UV-C irradiation showed > 90% decreases in glyphosate concentrations and the presence of multiple transformation products. The study suggests that UV mediated indirect photolysis can decrease concentrations of glyphosate and generate less toxic products with decreased overall toxicity to aquatic organisms.



2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Dieter Hennecke ◽  
Jan Hassink ◽  
Judith Klein ◽  
Mike Kruse

Abstract Background OECD TG 309 “Aerobic Mineralisation in Surface Water” (OECD Test Guideline 309 (2004)) is currently used in regulation for the assessment of the persistence of chemicals in surface water. The test is performed in a batch under defined conditions. Processes which might be relevant for the fate of a chemical in surface water like direct and indirect photolysis are not addressed. In order to study the impact of sunlight on the fate in surface water, pendimethalin, a herbicidal active substance with known sensitivity to aqueous photolysis, was used. This was tested in an experiment based on OECD 309, but scaled up to 900 L size with a 1.40 m water column and irradiated with special lamps in order to monitor the fate of the substance at different water depths, in comparison to dark controls. Results Pendimethalin degraded significantly under the applied test conditions. The test setups with exposure to simulated sunlight showed a significant faster degradation compared to the dark experiments. Application of 900 g sediment (1% of test system) to the test system further increased the degradation rate. In the simulated sunlight setups a faster degradation was observed in the upper water layer, hence, the concentration of the photolysis products were highest in the upper water layer, where the highest light intensity was measured. With decreasing light intensity in deeper water layers photolysis products were still detected at a water depth of 125 cm. Mineralisation up to 22% of the applied radioactivity was observed. In the dark controls neither significant amounts of photolysis products nor any mineralisation were detected. Among the different sampling depths no significant differences were observed. It was further observed that the dark controls became anaerobic at the end of the incubation time. This has been observed previously in standard laboratory tests according to OECD 309. Conclusions The study proves that for a substance sensitive to photolysis like pendimethalin, exposure to simulated sunlight leads to a significantly reduced degradation half-life (DegT50) in surface water compared to the dark control. In the standard test according to OECD guideline 309 the influence of photolytical degradation is not considered and thus the laboratory test can lead to the overestimation of the persistence of a chemical in surface water and consequently to a false-positive evaluation in the overall PBT assessment (ECHA Guidance on Information Requirements and Chemical Safety Assessment 2004), when only the results of the standard OECD 309 study are considered.



Author(s):  
Yutong Zhang ◽  
Ruochun Zhang ◽  
Si-Liang Li ◽  
Khan M.G. Mostofa ◽  
Xiaoli Fu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document