scholarly journals Impacts of wildfire and landscape factors on organic soil properties in Arctic tussock tundra

Author(s):  
Jiaying He ◽  
Dong Chen ◽  
Liza Jenkins ◽  
Tatiana V Loboda
2018 ◽  
Vol 2 (1) ◽  
pp. 135
Author(s):  
Efrinda Ari Ayuningtyas ◽  
Ainul Fahmi Nur Ilma ◽  
Rindhang Bima Yudha

Soil erosion was happened caused by many factors, such as rainfall intensity, soil erodbility, steepness and length of slope, land cover, and conservation practices. In other case, the soil properties also influence the vulnerability of soil to be detached. This soil properties characteristics is classified as soil erodibility. Erodibility factor (K) from the Universal Soil Loss Equation (USLE) in this study was the result of soil erodibility estimation or soil capability to be dispersed by rain. K factor was affected by soil organic, soil permeability, soil structures, and soil textures. This study was contributed in Serang Watershed because of the main fuction of this watershed to supply water resources especially in Sermo Reservoir in Ngrancah Subwatershed. This reservoir was used to distribute water and irrigation to all Kulonprogo District and especially to keep the sustainability of sedimentation of soastal area di Glagah Beach. All of soil properties was collected in each landform of Serang Watershed and was analyzed by laboratory measurement. By using K factor formula, the K value can be estimated. Geographic Information System (GIS) tools were used to map and represent the spatial information of soil erodibility of Serang Watershed. The result of this study showed that the high value of K factor was distributed in the area which has genesis of structural, denudated structural, and sedimented denudational. Furthermore, this study can be strived to analyze soil erosion hazard which was influenced by soil erodibility.


2019 ◽  
Author(s):  
Kristen Manies ◽  
Mark Waldrop ◽  
Jennifer Harden

Abstract. Boreal ecosystems comprise about one tenth of the world's land surface and contain over 20 % of the global soil carbon (C) stocks. Boreal soils are unique in that the mineral soil is covered by what can be quite thick layers of organic soil. These organic soil layers, or horizons, can differ in their state of decomposition, source vegetation, and disturbance history. These differences result in varying soil properties (bulk density, C content, and nitrogen (N) content) among soil horizons. Here we summarize these soil properties, as represented by over 3000 samples from Interior Alaska, and examine how soil drainage and stand age affect these attributes. The summary values presented here can be used to gap-fill large datasets when important soil properties were not measured, provide data to initialize process-based models, and validate model results. These data are available at https://doi.org/10.5066/P960N1F9 (Manies, 2019).


2020 ◽  
Vol 12 (3) ◽  
pp. 1745-1757
Author(s):  
Kristen Manies ◽  
Mark Waldrop ◽  
Jennifer Harden

Abstract. Boreal ecosystems comprise one-tenth of the world's land surface and contain over 20 % of the global soil carbon (C) stocks. Boreal soil is unique in that its mineral soil is covered by what can be quite thick layers of organic soil. These organic soil layers, or horizons, can differ in their state of decomposition, source vegetation, and disturbance history. These differences result in varying soil properties (bulk density, C concentration, and nitrogen concentration) among soil horizons. Here we summarize these soil properties, as represented by over 3000 samples from Interior Alaska, and examine how soil drainage and stand age affect these attributes. The summary values presented here can be used to gap-fill large datasets when important soil properties were not measured, provide data to initialize process-based models, and validate model results. These data are available at https://doi.org/10.5066/P960N1F9 (Manies, 2019).


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 894C-894
Author(s):  
Mohamed Badrane Erhioui ◽  
A. Karam ◽  
S. Yelle

The large amount of organic carbon content present in de-inking residues makes them attractive for use in agricultural soils as an organic soil amendment. Greenhouse bioessays were undertaken to evaluate the agronomic value of de-inking sludge (DS). It was incorporated in a sandy soil to study the effects of different rates of de-inking residue amendments and N fertilizer combinations on soil properties and growth of corn. Particular attention was given to trace element concentrations. In a split factorial design, three variables were investigated: harvest time (after 20, 40, and 60 days), application rates of DS (0, 35, 70, and 105 t·ha–1), and four N rates (0, 140, 280, and 420 kg·ha–1). Chemical analyses of the fresh residues did not indicate the presence of heavy metals at levels potentially toxic to the environment. Soil chemical properties were clearly improved following the incorporation of DS. For example, adding different amounts of DS had a significant impact on the pH, the cation exchange capacity, and soil moisture. In addition, salinity was not affected with DS application. Seed germination was high in all the treatments and was not significantly influenced by DS application. Moreover, results on vegetative growth indicated a good relationship between the C:N ratio and biomass production. The DS combined with supplemental fertilizer seems to have a positive effect on plant growth. Overall, these results suggest that the limiting factor in de-inking paper sludge valorization is the amount of N available to the plant. Also, no other toxic products were found that could be harmful to the environment.


2008 ◽  
Vol 99 (1) ◽  
pp. 134-144 ◽  
Author(s):  
A.C. Parent ◽  
M.C. Bélanger ◽  
L.E. Parent ◽  
R. Santerre ◽  
A.A. Viau ◽  
...  

2009 ◽  
Vol 39 (12) ◽  
pp. 2381-2390 ◽  
Author(s):  
D.N. Kothawala ◽  
T.R. Moore

Dissolved nitrogen (N) species, including ammonium (NH4+-N), nitrate (NO3–-N), and dissolved organic nitrogen (DON), are important nutrient sources in soils. The mobility of DON and NH4+-N in soil solutions is influenced by abiotic adsorption to mineral soil particle surfaces. We determined relationships between soil properties and their ability to adsorb NH4+-N, NO3–-N, and DON, using batch experiments. A range of 41 mineral horizons was collected from across Canada, including Podzols, Brunisols, Luvisols, Gleysols, and an organic soil. The adsorption of DON and dissolved organic carbon (DOC) were positively correlated (R2 = 0.86), and both were best explained by the amount of iron and aluminum associated with poorly crystalline phases. Adsorption of NH4+-N was strongest in Gleysols and Luvisols, while adsorption of NO3–-N was weak in all soils. A reduction in the DOC:DON ratio was observed for most mineral horizons (89%) after equilibration from an original ratio of 35:1. Mineral horizons with a net desorption of DON had a significantly greater reduction in the final DOC:DON ratios than horizons with a net adsorption of DON. The results from this study found that while similar soil properties could predict DOC and DON adsorption, DON was slightly more mobile than DOC.


Sign in / Sign up

Export Citation Format

Share Document