scholarly journals Effects of De-inking Sludge on soil Properties and Corn Growth

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 894C-894
Author(s):  
Mohamed Badrane Erhioui ◽  
A. Karam ◽  
S. Yelle

The large amount of organic carbon content present in de-inking residues makes them attractive for use in agricultural soils as an organic soil amendment. Greenhouse bioessays were undertaken to evaluate the agronomic value of de-inking sludge (DS). It was incorporated in a sandy soil to study the effects of different rates of de-inking residue amendments and N fertilizer combinations on soil properties and growth of corn. Particular attention was given to trace element concentrations. In a split factorial design, three variables were investigated: harvest time (after 20, 40, and 60 days), application rates of DS (0, 35, 70, and 105 t·ha–1), and four N rates (0, 140, 280, and 420 kg·ha–1). Chemical analyses of the fresh residues did not indicate the presence of heavy metals at levels potentially toxic to the environment. Soil chemical properties were clearly improved following the incorporation of DS. For example, adding different amounts of DS had a significant impact on the pH, the cation exchange capacity, and soil moisture. In addition, salinity was not affected with DS application. Seed germination was high in all the treatments and was not significantly influenced by DS application. Moreover, results on vegetative growth indicated a good relationship between the C:N ratio and biomass production. The DS combined with supplemental fertilizer seems to have a positive effect on plant growth. Overall, these results suggest that the limiting factor in de-inking paper sludge valorization is the amount of N available to the plant. Also, no other toxic products were found that could be harmful to the environment.

2019 ◽  
Vol 70 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Wojciech Stępień ◽  
Monika Kobiałka

Abstract The research was carried out continuously since 1923 in a permanent fertilisation experiment at the Experimental Station of SGGW in Skierniewice. The objective of the research was to determine the effect of long-term fertilisation (Ca, CaNPK, NPK) and crop rotation systems (rye monoculture without fertilisation with manure and five-field rotation with legume crop and manure fertilisation) on selected physical and chemical soil properties. Long-term fertilisation caused various degrees of change in many physio-chemical properties in three soil horizons (Ap, Eet, Bt): pH in KCl, cation exchange capacity, total exchangeable bases, base saturation, content of carbon, nitrogen and mineral forms of nitrogen (NO3, NH4) as well as the carbon-nitrogen ratio. The combined manure and mineral fertilisation increased the sorption capacity, total exchangeable bases, base cation saturation and total content of C and N in comparison to organic or mineral fertilisation. As a result of lime application, an increase in these parameters was determined with the exception of total contents of carbon and nitrogen, showing no differences or a decrease. A positive effect was confirmed in five-field crop rotation, which improves physicochemical soil properties in comparison to cereal monoculture. The C:N ratio narrows down with growing depth because more nitrogen than carbon migrates down the soil profile.


Author(s):  
O. A. Denton ◽  
I. O. Fademi ◽  
K. S. Are ◽  
A. O. Ojo ◽  
O. D. Adeoyolanu

Application of manure for soil amendment plays important roles in reclaiming and improving soil properties of degraded soils. This study assessed the effects of composted and non-composted manures on a degraded soil under continuous maize production. The treatments applied consisted of composted manures in form of cassava based compost (CBM) and verticompost (VC) at the rate of 0, 30, 60 and 120 tons/ha, non-composted manure (NC) applied as poultry manure (PM), and an un-amended control plot. These treatments were laid out in a randomized complete block design replicated three times. Soil physical and chemical properties were determined for two consecutive seasons, with maize (SUWAN 1-SYR) planted as test crop. The CBM, VC and PM treatments increased the soil organic carbon content by 18.2, 24.1, and 22.3 % respectively. Corresponding increases observed in cation exchange capacity (CEC) were 13.6, 15.7, and 15.2 %. The comparison of the soil chemical properties measured indicated positive effects from the amendments on the soil properties in the order: CBM < PM < VC.  The maize grain yield of cassava based fertilized plot consistently and significantly was higher than the other treatments in both cropping seasons. However, both the composted and non-composted manures favored improved maize growth and resulted in higher grain yields (4.62 – 6.03 t ha-1) than the un-amended control treatment (3.69 t ha-1). The study therefore showed that the incorporation of manures, whether composted or non-composted, is beneficial to soils, improving one or more essential soil attributes thus reducing soil degradation.


Author(s):  
Jorge Dafonte Dafonte ◽  
Montserrat Valcárcel Armesto ◽  
Rosane Da Silva Dias ◽  
Eva Vidal Vázquez ◽  
Antonio Paz González

The spatial variability of soil properties can be assessed through concepts of scale invariance, fractals and multifractals. The aim of this study was to characterize the scaling patterns and structural heterogeneity properties of general soil chemical properties along a short (i.e. 52 m large) transect. Field measurements were carried out at the experimental farm of CIAM located in Mabegondo, A Coruña, Spain. The studied transect was marked following land slope, and 66 soil samples were collected at the 0-20 cm depth every 0.8 m. The soil properties analyzed were: pH (H2O ), organic carbon content, exchangeable Ca, Mg and K, exchangeable acidity (H + Al), exchangeable bases (SB), cation exchange capacity (CEC), percent base saturation (V) and extractable P. The soil properties studied showed various degrees of multifractality. The spatial distribution of pH was characterized by quasi-monofractal behaviour; CEC, (H+Al) and OM, presented a relatively low degree of multifractality, and the other soil properties studied showed stronger degrees of multifractality, being the highest one for Olsen extractable P. In general, the scaling features of the properties studied implied a multifractal nature, where the low and high density regions scaled differently.


2020 ◽  
Vol 5 (1) ◽  
pp. 94-106
Author(s):  
Evgeny Abakumov ◽  
Evgeniya Morgun ◽  
Alexandr Pechkin ◽  
Vyacheslav Polyakov

AbstractThe post-anthropogenic and soil cover transformations of former agricultural soils on the abandoned lands in the Russian Arctic territory are poorly investigated due to the active growth of the city complexes and increasing area occupied by agricultural lands. That is lead to an increase in the area of the arable lands surrounding the polar urbanized territories. Today, most of that land allocated for agricultural needs has been abandoned or affected by other types of land use. This study aimed to investigate the abandoned lands surrounding some of the settlements in the central part of the Yamal region. The soil diversity, morphology, and chemical and agrochemical properties were investigated with special reference to the specific transformations that occur to fallow lands under permafrost-affected cryogenic-ecosystem conditions. Analysis of data show that these soils are characterized by features relating to both, previous (and existing), anthropogenic impacts and natural processes such as cryogenic mass transfer. The degradation of the arable humus-enriched horizon was not as pronounced as it has been in more humid boreal environments over recent decades. The organic carbon content in topsoil depends on the land use and varied considerably among the soil types. The former arable topsoil horizon has been stable over time in terms of its morphological features and agrochemical state. Despite the high soil acidity levels, thenutrient content in the anthropogenically impacted soils was still high, even though being abandoned for 20 years.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


2021 ◽  
Vol 8 (01) ◽  
Author(s):  
PEPAKAYALA VARALAKSHMI ◽  
POLAGANI NAGARJUNA ◽  
MOHAN BABU Y. N. ◽  
ADI LAKSHMI G. ◽  
ARADHNA KUMARI ◽  
...  

A study was conducted in an ongoing experiment under AICRP on micronutrients at nursery jhilli of RPCAU, research farm. The experiment consisted of thirteen treatments, of which twelve combinations were of four doses of zinc (Zn) (2.5, 5.0, 7.5 and 10 kg ha-1), three frequencies (only once, alternate year and every year) of application along with control with the no-zinc application. Rice and wheat crops were grown in succession with the recommended dosages of fertiliser viz. 120:60:40 of N: P2O5: K2O applied as Urea, DAP, and Potash, respectively. Surface soil samples (0-15 cm) were collected after the harvest of the wheat crop in the year 2018, i.e. after completion of six years of the experiment, and analysed for soil physical and chemical properties. The availability of nitrogen, sulphur, organic carbon content and aggregate stability increased, and the bulk density, phosphorous availability decreased with increasing doses and zinc application rates. No effect on soil availability of potassium, pH and EC. The treatment T7 i.e., application of zinc @ 7.5 kg Zn ha-1 in alternate year application was the best treatment with regards to yield of rice-wheat cropping (982.9 q ha-1) and also for good physical and chemical properties of the soil.


2019 ◽  

<p>Application of municipal sewage sludge (MSS) to agricultural soils is a current practice in EU. European legislation permits its use in agriculture when concentrations of metals in soil do not exceed the maximum permissible limits. In order to study the influence of MSS on cotton yield and soil properties, a filed experiment was conducted in a soil classified as Typic Xerochrepts located in Lamia area, central Greece, for two consecutive years. The experimental design was complete randomized blocks with four treatments: Control (C ), inorganic fertilization (IF), application of 6000 dry kg ha-1 MSS, and 10000 dry SS kg ha-1, each replicated 4 times. The results showed that MSS application in both rates, increased significantly cotton yield compared to control equally to inorganic fertilization. Soil properties, at the end of the second year of MSS application, were significantly affected by MSS application in a positive way i.e. pH decreased slightly, but organic matter content, available phosphorus, total nitrogen concentrations exchangeable potassium and available zinc and copper increased significantly. The potentially toxic elements lead, chromium, and nickel were not significantly affected by MSS application in both application rates compared to control.</p>


Agropedology ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
R. Srinivasan ◽  
◽  
R. Vasundhara ◽  
M. Lalitha ◽  
B. Kalaiselvi ◽  
...  

Four typical pedons representing major mango growing soils, developed from granite gneiss parent material were studied for their morphological, physical and chemical properties. The soils were moderately shallow (50-75 cm) to very deep (>150 cm) in depth, loamy sand to sandy clay loam in texture, sub-angular blocky in structure, reddish brown to dark red in colour, slightly acidic to moderately alkaline in reaction, non-saline, very low to high in organic carbon content (0.09 to 1.29%), low AWC (3.36 to 7.80%), low to medium in cation exchange capacity (2.90 to 19.36 cmol (p+) kg-1) and high base saturation (78 to 98%). The soils also had high amounts of coarse fragments in P1 and P2 and high clay content in P4 and P2. Among the exchangeable cations, calcium was found to be high in most of the soils, followed by magnesium, sodium, and potassium. Based on the soil characteristics, the mango growing soils were classified as Typic Haplargids and Typic Paleargids in subgroup level. Varying soil and site characters i.e., poor rainfall, shallow soil depths, excess gravel contents, low AWC, poor nutrient status and severe soil erosion are limiting the growth and development of mango plantation. Developing site-specific soils based suitable management practices can improve the productivity of mango crops.


Soil Systems ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 62 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
María Fandiño ◽  
Benjamín J. Rey ◽  
Jorge Dafonte ◽  
Javier J. Cancela

Soil properties show a high spatio-temporal variability, affecting productivity and crop quality within a given field. In new vineyard plantations, with changes in the initial topographic profile, this variability is exacerbated due to the incorporation of soil from different origins and qualities. The aim of the current study was to characterize the variability of soil properties in a newly established vineyard, and delineating zones for site-specific management of fertilization. For this purpose, the soil apparent electrical conductivity (ECa) in the first 150 cm was measured with an electromagnetic induction sensor. A soil sampling was performed following a regular grid (35 × 35 m, 149 samples), collecting samples down to 40 cm depth for determining soil chemical properties. Spatial variability was assessed through semivariogram calculation and ordinary kriging. The soil properties that better represent the variability in this newly established vineyard were pH, effective cation exchange capacity (ECEC), carbon content, clay and ECa. The ECa was homogeneous all over the vineyard, except for the area closer to the river where a greater human intervention had occurred, with contributions of external soil at a greater depth. Soil properties showed a great spatial variability. Interpolated maps allowed for detecting areas with a lack of nutrients in which a differential fertilization could be performed in search of a sustainable and balanced production. The information provided by the maps of pH, ECEC and carbon and potassium contents allow for performing a differential management of the vineyard in terms of fertilization. In addition, the results obtained suggest that the vineyard should be divided into two sectors for a differential irrigation management. The ECa was not significantly correlated to most of the soil properties determined in the current study; however, it allowed for a low-cost mapping of the vineyard soil and established large areas of management within the vineyard.


Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 288
Author(s):  
Shai Zwikel ◽  
Hanoch Lavee ◽  
Pariente Sarah

The research was conducted in Israel at 4 sites located along a south-north transect, along which climatic conditions range from arid in the south, through semi-arid, and Mediterranean, to humid Mediterranean in the north. At each site soil samples were collected in summer, winter, and spring over a 2-year period, from 3 microenvironments, from depths of 0–20 and 50–100 mm. The selected microenvironments at the arid, semi-arid, and Mediterranean sites were ‘under shrub’, ‘between shrubs’, and ‘under rock fragments’; those at the humid Mediterranean site were ‘under shrub’, ‘between shrubs’, and ‘under tree’. Intracellular and extracellular arylsulfatase enzyme activities, and some soil properties, were examined. The research aims were: (1) to analyse the relationship between arylsulfatase enzyme activity and some soil properties; (2) to analyse the effects of soil components (local factor) and climatic conditions (regional factor) on arylsulfatase enzyme activity. At both arid sites the organic carbon content, which had a positive effect on arylsulfatase activity, was much higher under shrubs and somewhat higher under rock fragments than between shrubs. At the semi-arid site this was also true of the moisture content. However, at the arid site high soil salinity and dryness limited the enzyme activity, especially the intracellular activity, under shrubs and rock fragments, respectively. In contrast, at the semi-arid site the organic matter was the main limiting factor of enzyme activity. Thus, the intracellular and extracellular activities of the enzyme were considerably higher under shrubs, and somewhat higher under rock fragments, than between shrubs. With increasing rainfall amount towards the Mediterranean sites the enzyme activity increased sharply and the differences between the under shrub, under rock fragment, and between shrubs microenvironments decreased sharply, mainly as a result of the reduction in the spatial variations in organic carbon. At the humid Mediterranean site enzyme activity under trees was considerably higher than that in other microenvironments, and this was expressed in the more suitable environmental conditions under trees, i.e. higher content of organic carbon, moisture, and aggregates.


Sign in / Sign up

Export Citation Format

Share Document