scholarly journals Understanding and modelling wildfire regimes: an ecological perspective

Author(s):  
Sandy P Harrison ◽  
Iain Colin Prentice ◽  
Keith J Bloomfield ◽  
Ning Dong ◽  
Matthias Forkel ◽  
...  

Abstract Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes – and their interactions with human activities – are far from being comprehensively understood. There is a lack of clarity about the ‘causes’ of wildfire, and about how ecosystems could be managed for the co-existence of wildfire and people. We present evidence supporting an ecosystem-centred framework for improved understanding and modelling of wildfire. Wildfire has a long geological history and is a pervasive natural process in contemporary plant communities. In some biomes, wildfire would be more frequent without human settlement; in others they would be unchanged or less frequent. A world without fire would have greater forest cover, especially in present-day savannas. Many species would be missing, because fire regimes have co-evolved with plant traits that resist, adapt to or promote wildfire. Certain plant traits are favoured by different fire frequencies, and may be missing in ecosystems that are normally fire-free. For example, post-fire resprouting is more common among woody plants in high-frequency fire regimes than where fire is infrequent. The impact of habitat fragmentation on wildfire crucially depends on whether the ecosystem is fire-adapted. In normally fire-free ecosystems, fragmentation facilitates wildfire starts and is detrimental to biodiversity. In fire-adapted ecosystems, fragmentation inhibits fires from spreading and fire suppression is detrimental to biodiversity. This interpretation explains observed, counterintuitive patterns of spatial correlation between wildfire and potential ignition sources. Lightning correlates positively with burnt area only in open ecosystems with frequent fire. Human population correlates positively with burnt area only in densely forested regions. Models for vegetation-fire interactions must be informed by insights from fire ecology to make credible future projections in a changing climate.

2021 ◽  
Author(s):  
Yicheng Shen ◽  
Luke Sweeney ◽  
Mengmeng Liu ◽  
Jose Antonio Lopez Saez ◽  
Sebastián Pérez-Díaz ◽  
...  

Abstract. Charcoal accumulated in lake, bog or other anoxic sediments through time has been used to document the geographical patterns in changes in fire regimes. Such reconstructions are useful to explore the impact of climate and vegetation changes on fire during periods when the human influence was less prevalent than today. However, charcoal records only provide semi-quantitative estimates of change in biomass burning. Here we derive quantitative estimates of burnt area from vegetation data in two stages. First, we relate the modern charcoal abundance to burnt area using a conversion factor derived from a generalized linear model of burnt area probability based on eight environmental predictors. Then, we establish the relationship between fossil pollen assemblages and burnt area using Tolerance-weighted Weighted Averaging Partial Least-Squares with sampling frequency correction (fxTWA-PLS). We test this approach using the Iberian Peninsula as a case study because it is a fire-prone region with abundant pollen and charcoal records covering the Holocene. We derive the vegetation-burnt area relationship using the 29 records that have both modern and fossil charcoal and pollen data, and then reconstruct palaeo-burnt area for the 114 records with Holocene pollen records. The pollen data predict charcoal abundances through time relatively well (R2 = 0.47) and the changes in reconstructed burnt area are synchronous with known climate changes through the Holocene. This new method opens up the possibility of reconstructing changes in fire regimes quantitatively from pollen records, which are far more numerous than charcoal records.


2016 ◽  
Vol 283 (1840) ◽  
pp. 20161703 ◽  
Author(s):  
Morgan W. Tingley ◽  
Viviana Ruiz-Gutiérrez ◽  
Robert L. Wilkerson ◽  
Christine A. Howell ◽  
Rodney B. Siegel

An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity—defined as the standard deviation of fire severity—increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called ‘mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes.


2018 ◽  
Vol 373 (1761) ◽  
pp. 20170443 ◽  
Author(s):  
Christopher N. Johnson ◽  
Lynda D. Prior ◽  
Sally Archibald ◽  
Helen M. Poulos ◽  
Andrew M. Barton ◽  
...  

Large vertebrates affect fire regimes in several ways: by consuming plant matter that would otherwise accumulate as fuel; by controlling and varying the density of vegetation; and by engineering the soil and litter layer. These processes can regulate the frequency, intensity and extent of fire. The evidence for these effects is strongest in environments with intermediate rainfall, warm temperatures and graminoid-dominated ground vegetation. Probably, extinction of Quaternary megafauna triggered increased biomass burning in many such environments. Recent and continuing declines of large vertebrates are likely to be significant contributors to changes in fire regimes and vegetation that are currently being experienced in many parts of the world. To date, rewilding projects that aim to restore large herbivores have paid little attention to the value of large animals in moderating fire regimes. Rewilding potentially offers a powerful tool for managing the risks of wildfire and its impacts on natural and human values. This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


1997 ◽  
Vol 3 (3) ◽  
pp. 206 ◽  
Author(s):  
G. Barry Baker ◽  
E. Belinda Dettmann ◽  
Stephen J. Wilson

Survival rate, population size, recruitment and probability of capture, derived from a long-term study of 20 passerine species in wet sclerophyll forest near Canberra, were used to measure the impact of a high intensity wildfire which burnt 70% of the study area. The wildfire significantly affected the population size of 13 species for a period of up to six years following the fire. Survival and recruitment were the least sensitive measures of impact and indicated a significant response to fire for only 2 of 10 species. We detected measurable effects of the fire for 17 of the 20 species studied. Many of these species had returned to prefire levels within three years, but for nine species the effects were still apparent six years later. Mark-recapture methodology provides an effective way of measuring the impact of fire regimes in forest environments. Long-term monitoring programmes should be established in fire-prone forest environments to contribute toward our understanding of fire, and its effect on avian populations. Such programmes have resource implications and researchers are urged to encourage the participation of the amateur bird banding community to contribute to such projects.


Author(s):  
N.-E. Geserbaatar ◽  
E. Nasanbat ◽  
O. Lkhamjav

Abstract. The objective of this study was the impact of forest fire on forest cover types. This study has identified non-forest and forest area that has seven forest class are included with cedar, pine, larch, birch, birch-pine mixed, birch-larch mixed and cedar-larch mixed, additionally, remote sensing imagery is applied. In contrast, Landsat imagery has been used several classification approaches. Moreover, the current classification has developments in segmentation and object-oriented techniques offer the suitable analysis to classify satellite data. In the object-oriented classification approach, images cluster to homogenous area as forest types by suitable parameters in some level. The accuracy analysis revealed that overall accuracy showed a good accuracy of determination (86.33 percent in 2000 and 93.75 percent in 2011) with regard to identify of the forest cover and type. Furthermore, these results suggest that the Landsat TM and ETM+ data can reliable detect the forest type based upon the segmentation and object-oriented techniques. In generally, our study area is high-risky region to forest fires. It is higher influence to forest cover and tree species and other ecosystems. Overall, wildfire of impact results showed that 25239 ha of forests were changed to burnt area and 52603 ha forests were changed to grassland.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Tadas Nikonovas ◽  
Allan Spessa ◽  
Stefan H. Doerr ◽  
Gareth D. Clay ◽  
Symon Mezbahuddin

AbstractDeforestation in Indonesia in recent decades has made increasingly large parts of the region vulnerable to fires. Burning is particularly widespread in deforested peatlands, and it leads to globally significant carbon emissions. Here we use satellite-based observations to assess loss and fragmentation of primary forests and associated changes in fire regimes in Sumatra and Kalimantan between 2001 and 2019. We find that fires did not penetrate undisturbed primary forest areas deeper than two kilometres from the forest edge irrespective of drought conditions. However, fire-resistant forest now covers only 3% of peatlands and 4.5% of non-peatlands; the majority of the remaining primary forests are severely fragmented or degraded due to proximity to the forest edge. We conclude that protection and regeneration of the remaining blocks of contiguous primary forest, as well as peatland restoration, are urgently needed to mitigate the impacts of potentially more frequent fire events under future global warming.


2019 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers of fire, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1900. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trend in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the strongest differences leading to diverging trajectories are related to the way anthropogenic ignitions and suppression, as well as the effects of land-use on vegetation and fire, are incorporated in individual models. This points to a need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire for global change applications. Only two models show a strong response to CO2 and the response to lightning on global scale is low for all models. The sensitivity to climate shows a spatially heterogeneous response and globally only two models show a significant trend. It was not possible to attribute the climate-induced changes in burned area to model assumptions or specific climatic parameters. However, the strong influence of climate on the inter-annual variability in burned area, shown by all the models, shows that we need to pay attention to the simulation of fire weather but also meteorological influences on biomass accumulation and fuel properties in order to better capture extremes in fire behavior.


2021 ◽  
Author(s):  
Tadas Nikonovas ◽  
Allan Spessa ◽  
Stefan Doerr ◽  
Gareth Clay ◽  
Symon Mezbuhaddin

<p>Deforestation in Indonesia in recent decades has made increasingly large parts of the region vulnerable to fires. Burning is particularly widespread in deforested peatlands, and it leads to globally significant carbon emissions. Here we use satellite-based observations to assess loss and fragmentation of primary forests and associated changes in fire regimes in Sumatra and Kalimantan between 2001 and 2019. We find that fires did not penetrate undisturbed primary forest areas deeper than two kilometres from the forest edge irrespective of drought conditions. However, fire-resistant forest now covers only 3% of peatlands and 4.5% of non-peatlands; the majority of the remaining primary forests are severely fragmented or degraded due to proximity to the forest edge. We conclude that protection and regeneration of the remaining blocks of contiguous primary forest, as well as peatland restoration, are urgently needed to mitigate the impacts of potentially more frequent fire events under future global warming.</p>


2008 ◽  
Vol 363 (1498) ◽  
pp. 1829-1838 ◽  
Author(s):  
Francis E Mayle ◽  
Mitchell J Power

This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early–Mid-Holocene ( ca 8000–4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early–Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest ‘dieback’ scenario simulated for the future.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Chen ◽  
Shukui Niu ◽  
Xiaojuan Tong ◽  
Jinlong Zhao ◽  
Yu Sun ◽  
...  

The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982–1988 and 1989–2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I–III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.


Sign in / Sign up

Export Citation Format

Share Document