scholarly journals Complexity-like properties and parameter asymptotics of Lq-norms of Laguerre and Gegenbauer polynomials.

Author(s):  
Jesus S Dehesa ◽  
Nahual Sobrino

Abstract The main monotonic statistical complexity-like measures of the Rakhmanov’s probability density associated to the hypergeometric orthogonal polynomials (HOPs) in a real continuous variable, each of them quantifying two configurational facets of spreading, are examined in this work beyond the Cramér-Rao one. The Fisher-Shannon and LMC (López-Ruiz-Mancini-Calvet) complexity measures, which have two entropic components, are analytically expressed in terms of the degree and the orthogonality weight’s parameter(s) of the polynomials. The degree and parameter asymptotics of these two-fold spreading measures are shown for the parameter-dependent families of HOPs of Laguerre and Gegenbauer types. This is done by using the asymptotics of the Rényi and Shannon entropies, which are closely connected to the Lq-norms of these polynomials, when the weight function’s parameter tends towards infinity. The degree and parameter asymptotics of these Laguerre and Gegenbauer algebraic norms control the radial and angular charge and momentum distributions of numerous relevant multidimensional physical systems with a spherically-symmetric quantum-mechanical potential in the high-energy (Rydberg) and high-dimensional (quasi-classical) states, respectively. This is because the corresponding states’ wavefunctions are expressed by means of the Laguerre and Gegenbauer polynomials in both position and momentum spaces.

1973 ◽  
Vol 7 (1) ◽  
pp. 133-139
Author(s):  
L. M. Saunders ◽  
Davison E. Soper

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Sandeep Chatterjee ◽  
Sabita Das ◽  
Lokesh Kumar ◽  
D. Mishra ◽  
Bedangadas Mohanty ◽  
...  

We review the chemical and kinetic freeze-out conditions in high energy heavy-ion collisions for AGS, SPS, RHIC, and LHC energies. Chemical freeze-out parameters are obtained using produced particle yields in central collisions while the corresponding kinetic freeze-out parameters are obtained using transverse momentum distributions of produced particles. For chemical freeze-out, different freeze-out scenarios are discussed such as single and double/flavor dependent freeze-out surfaces. Kinetic freeze-out parameters are obtained by doing hydrodynamic inspired blast wave fit to the transverse momentum distributions. The beam energy and centrality dependence of transverse energy per charged particle multiplicity are studied to address the constant energy per particle freeze-out criteria in heavy-ion collisions.


1976 ◽  
Vol 54 (10) ◽  
pp. 1077-1082 ◽  
Author(s):  
I. Ahmad ◽  
M. Zafar ◽  
M. Irfan ◽  
M. Shafi

Experimental results on longitudinal momentum distributions of pions, protons, deuterons, tritons, and 3He produced in the interactions of 24 GeV/c protons with the Ag and Br nuclei of nuclear emulsion are presented. The variation of [Formula: see text] with the shower multiplicity, the angle of emission, and the mass of the particles has been studied. Many characteristics of pions have been found to be similar to those produced in hadron–hadron collisions. The results on pions suggest that perhaps the multiparticle production in nucleon–nucleus collisions takes place via a two-step mechanism.


Author(s):  
Jesus Sanchez-Dehesa ◽  
Nahual Sobrino

The Jacobi polynomials $\hat{P}_n^{(\alpha,\beta)}(x)$ conform the canonical family of hypergeometric orthogonal polynomials (HOPs) with the two-parameter weight function $(1-x)^\alpha (1+x)^\beta, \alpha,\beta>-1,$ on the interval $[-1,+1]$. The spreading of its associated probability density (i.e., the Rakhmanov density) over the orthogonality support has been quantified, beyond the dispersion measures (moments around the origin, variance), by the algebraic $\mathfrak{L}_{q}$-norms (Shannon and R\’enyi entropies) and the monotonic complexity-like measures of Cram\’er-Rao, Fisher-Shannon and LMC (L\’opez-Ruiz, Mancini and Calbet) types. These quantities, however, have been often determined in an analytically highbrow, non-handy way; specially when the degree or the parameters $(\alpha,\beta)$ are large. In this work, we determine in a simple, compact form the leading term of the entropic and complexity-like properties of the Jacobi polynomials in the two extreme situations: ($n\rightarrow \infty$; fixed $\alpha,\beta$) and ($\alpha\rightarrow \infty$; fixed $n,\beta$). These two asymptotics are relevant \textit{per se} and because they control the physical entropy and complexity measures of the high energy (Rydberg) and high dimensional (pseudoclassical) states of many exactly, conditional exactly and quasi-exactly solvable quantum-mechanical potentials which model numerous atomic and molecular systems.


2018 ◽  
Vol 33 (34) ◽  
pp. 1845020
Author(s):  
Yu. A. Sitenko

Quantum spinor matter in extremal conditions (high densities and temperatures, presence of strong magnetic fields) have drawn the attention of researchers in diverse areas of contemporary physics, ranging from cosmology, high-energy and astroparticle physics to condensed matter physics. We study an impact of the confining boundary conditions on the properties of physical systems with hot dense magnetized ultrarelativistic spinor matter and elucidate a significant role of boundaries for such systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Fu-Hu Liu ◽  
Ya-Hui Chen ◽  
Hua-Rong Wei ◽  
Bao-Chun Li

Transverse momentum distributions of final-state particles produced in soft process in proton-proton (pp) and nucleus-nucleus (AA) collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies are studied by using a multisource thermal model. Each source in the model is treated as a relativistic and quantum ideal gas. Because the quantum effect can be neglected in investigation on the transverse momentum distribution in high energy collisions, we consider only the relativistic effect. The concerned distribution is finally described by the Boltzmann or two-component Boltzmann distribution. Our modeling results are in agreement with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document