scholarly journals Requirements for the containment of COVID-19 disease outbreaks through periodic testing, isolation, and quarantine

Author(s):  
Ruslan I Mukhamadiarov ◽  
Shengfeng Deng ◽  
Shannon R. Serrao ◽  
Priyanka Priyanka ◽  
Lauren M Childs ◽  
...  

Abstract We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman-Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.

Author(s):  
Shannon R. Serrao ◽  
Shengfeng Deng ◽  
Priyanka ◽  
Ruslan I. Mukhamadiarov ◽  
Lauren M. Childs ◽  
...  

AbstractWe employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman–Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.


2019 ◽  
Vol 33 (26) ◽  
pp. 1950302
Author(s):  
Xiao Li Yang ◽  
Xiao Qiang Liu

Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise.


2007 ◽  
Vol 18 (08) ◽  
pp. 1339-1350 ◽  
Author(s):  
ZHENGPING WU ◽  
ZHI-HONG GUAN

Recent advances in complex network research have stimulated increasing interests in understanding the relationship between the topology and dynamics of complex networks. Based on the theory of complex networks and computer simulation, we analyze the robustness to time-delay in linear consensus problem with different network topologies, such as global coupled network, star network, nearest-neighbor coupled network, small-world network, and scale-free network. It is found that global coupled network, star network, and scale-free network are vulnerable to time-delay, while nearest-neighbor coupled network and small-world network are robust to time-delay. And it is found that the maximum node degree of the network is a good predictor for time-delay robustness. And it is found that the robustness to time-delay can be improved significantly by a decoupling process to a small part of edges in scale-free network.


2020 ◽  
Vol 15 (7) ◽  
pp. 732-740
Author(s):  
Neetu Kumari ◽  
Anshul Verma

Background: The basic building block of a body is protein which is a complex system whose structure plays a key role in activation, catalysis, messaging and disease states. Therefore, careful investigation of protein structure is necessary for the diagnosis of diseases and for the drug designing. Protein structures are described at their different levels of complexity: primary (chain), secondary (helical), tertiary (3D), and quaternary structure. Analyzing complex 3D structure of protein is a difficult task but it can be analyzed as a network of interconnection between its component, where amino acids are considered as nodes and interconnection between them are edges. Objective: Many literature works have proven that the small world network concept provides many new opportunities to investigate network of biological systems. The objective of this paper is analyzing the protein structure using small world concept. Methods: Protein is analyzed using small world network concept, specifically where extreme condition is having a degree distribution which follows power law. For the correct verification of the proposed approach, dataset of the Oncogene protein structure is analyzed using Python programming. Results: Protein structure is plotted as network of amino acids (Residue Interaction Graph (RIG)) using distance matrix of nodes with given threshold, then various centrality measures (i.e., degree distribution, Degree-Betweenness correlation, and Betweenness-Closeness correlation) are calculated for 1323 nodes and graphs are plotted. Conclusion: Ultimately, it is concluded that there exist hubs with higher centrality degree but less in number, and they are expected to be robust toward harmful effects of mutations with new functions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


Author(s):  
Vasiliki G. Vrana ◽  
Dimitrios A. Kydros ◽  
Evangelos C. Kehris ◽  
Anastasios-Ioannis T. Theocharidis ◽  
George I. Kavavasilis

Pictures speak louder than words. In this fast-moving world where people hardly have time to read anything, photo-sharing sites become more and more popular. Instagram is being used by millions of people and has created a “sharing ecosystem” that also encourages curation, expression, and produces feedback. Museums are moving quickly to integrate Instagram into their marketing strategies, provide information, engage with audience and connect to other museums Instagram accounts. Taking into consideration that people may not see museum accounts in the same way that the other museum accounts do, the article first describes accounts' performance of the top, most visited museums worldwide and next investigates their interconnection. The analysis uses techniques from social network analysis, including visualization algorithms and calculations of well-established metrics. The research reveals the most important modes of the network by calculating the appropriate centrality metrics and shows that the network formed by the museum Instagram accounts is a scale–free small world network.


2011 ◽  
Vol 474-476 ◽  
pp. 828-833
Author(s):  
Wen Jun Xu ◽  
Li Juan Sun ◽  
Jian Guo ◽  
Ru Chuan Wang

In order to reduce the average path length of the wireless sensor networks (WSNs) and save the energy, in this paper, the concept of the small world is introduced into the routing designs of WSNs. So a new small world routing protocol (SWRP) is proposed. By adding a few short cut links, which are confined to a fraction of the network diameter, we construct a small world network. Then the protocol finds paths through recurrent propagations of weak and strong links. The simulation results indicate that SWRP reduces the energy consumption effectively and the average delay of the data transmission, which leads to prolong the lifetime of both the nodes and the network.


Sign in / Sign up

Export Citation Format

Share Document