scholarly journals The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

Author(s):  
Junhui Liu ◽  
Jianlian Yang ◽  
Jiangbo Wang ◽  
Meng Yang ◽  
Chunzheng Tian ◽  
...  
2000 ◽  
Author(s):  
M. Bianchi ◽  
E. Gadda ◽  
A. Peretto

Abstract The European electric market is going to be fully liberalized moving the problems, related to the minimization of the electric energy production cost, to the Independent Power Producers. In the present paper, a computational code, developed by the Authors, to discover the management strategy permitting to minimize the total variable cost (in terms of fuel consumption) required by a power generation system to face a specific load demand, is described. Subsequently, the code has been applied to an existing power generation system comparing the fuel consumption in different management strategies. It has also emerged that the code may represent an useful advice in the power generation system upgrading feasibility, calculating the fuel saving obtainable with the addition of new or repowered units.


2019 ◽  
Vol 109 ◽  
pp. 00065
Author(s):  
Yurii Oksen ◽  
Maksym Radiuk ◽  
Yurii Komissarov ◽  
Mykhailo Kirsanov

The possibility of increasing the efficiency of drying coal concentrate unit on the basis of pipe-dryers has been investigated by converting the heat of flue gases outlet into electrical energy and the heat potential of hot water supply system with a heat power generation unit operating on low-boiling working fluids. A method and an algorithm for calculating the thermal mode of the unit under the conditions of specified limitations on temperature pressures in heat exchangers have been developed. On the basis of mathematical modeling of thermal conditions, it has been found that under the conditions of PD-11 pipe-dryers, when the heat power generation unit operates with butane-pentane mixture, 204 kW of electricity can be generated with the condensation cycle, and 1780 kW of heat and 65 kW of electric energy can be generated with the heating cycle.


2020 ◽  
Vol 13 (5) ◽  
pp. 1462-1472 ◽  
Author(s):  
Hyeon Lee ◽  
Rammohan Sriramdas ◽  
Prashant Kumar ◽  
Mohan Sanghadasa ◽  
Min Gyu Kang ◽  
...  

A magnetoelectric coupled magneto-mechano-electric energy conversion mechanism allows the generation of high electrical power from ambient stray magnetic fields around infrastructures.


2020 ◽  
Vol 152 ◽  
pp. 01001 ◽  
Author(s):  
Eduardo Garcia-Garrido ◽  
Montserrat Mendoza-Villena ◽  
Pedro M. Lara-Santillan ◽  
Enrique Zorzano-Alba ◽  
Alberto Falces

The integration of renewable energies, specifically solar energy, in electric distribution systems is increasingly common. For an optimal operation, it is very important to forecast the final net demand of the power distribution network, considering the variability of solar energy combined with the variability of the electric energy consumption habits of population. This paper presents the methodology followed to forecast the net demand in a power distribution substation. Two approaches are considered, the net demand direct prediction, and the indirect prediction with the forecasts of PV power generation and load demand. Artificial Neural Network (ANN) based models and autoregressive models with exogenous variables (ARX) are used to predict the net demand, directly and indirectly, for the 24 hours of the day-ahead. The methodology is applied to a medium voltage distribution substation and the direct and indirect forecasts are compared.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 743 ◽  
Author(s):  
Gianluca Caposciutti ◽  
Andrea Baccioli ◽  
Lorenzo Ferrari ◽  
Umberto Desideri

Biogas is a fuel obtained from organic waste fermentation and can be an interesting solution for producing electric energy, heat and fuel. Recently, many European countries have incentivized the production of biomethane to be injected into natural gas grids or compressed and used as biofuel in vehicles. The introduction of an upgrading unit into an existing anaerobic digestion plant to convert biogas to biomethane may have a strong impact on the overall energy balance of the systems. The amount of biomethane produced may be optimized from several points of view (i.e., energy, environmental and economic). In this paper, the mass and energy fluxes of an anaerobic digestion plant were analyzed as a function of the biogas percentage sent to the upgrading system and the amount of biomethane produced. A numerical model of an anaerobic digestion plant was developed by considering an existing case study. The mass and energy balance of the digesters, cogeneration unit, upgrading system and auxiliary boiler were estimated when the amount of produced biomethane was varied. An internal combustion engine was adopted as the cogeneration unit and a CO2 absorption system was assumed for biogas upgrading. Results demonstrated that the energy balance of the plant is strictly dependent on the biomethane production and that an excess of biomethane production makes the plant totally dependent on external energy sources. As for the environmental impact, an optimal level of biomethane production exists that minimizes the emissions of equivalent CO2. However, high biomethane subsides can encourage plant managers to increase biomethane production and thus reduce CO2 savings.


2017 ◽  
Vol 54 (2) ◽  
pp. 3-13
Author(s):  
A. Serebryakov ◽  
E. Kamolins ◽  
N. Levin

Abstract The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.


Sign in / Sign up

Export Citation Format

Share Document