scholarly journals Influence of Solar Activity on Total Annual Precipitation

Author(s):  
Zenon Szypcio ◽  
Katarzyna Dolzyk-Szypcio
2020 ◽  
Vol 25 (4) ◽  
pp. 50-57
Author(s):  
V. S. Ignatchik ◽  
◽  
S. Y. Ignatchik ◽  
N. V. Kuznetsova ◽  
A. Y. Fes’kova ◽  
...  

Introduction. Based on Resolution of the Government of the Russian Federation No. 782 “On water supply and wastewater disposal plans”, the volume of generated wastewater should be forecast for a period of at least 10 years. Along with this, it is also necessary to assess the hydraulic modes of operation of networks and collectors, specified earlier. However, the existing regulatory literature lacks data on the dynamics of calculated rain intensities and their prospective values. The analysis of the subject area showed that it is possible to determine the climatic parameters of an area, and thus establish the values for the characteristics of calculated rain, based on the data of long-term observations (from 20 years) with one self-recording rain gauge, or with a network of similar rain gauges, with a duration of observations of 5 years or more. A similar network of rain gauges is available in St. Petersburg. It makes it possible to assess the actual values of climatic parameters, but due to the lack of statistical data does not allow for assessing the dynamics of their changes. Therefore, the purpose of this article is to roughly estimate the dynamics of changes in climatic parameters in St. Petersburg and the degree of their impact on the hydraulic modes of operation of surface runoff drainage networks and collectors. Methods. In the course of the study, we analyzed the dynamics of changes in the total annual precipitation H and rain force in St. Petersburg and examined the influence of the dynamics of rain force changes on the operation of surface runoff drainage networks and collectors. Results. At the first stage of the study, we obtained the results of linear approximation of the H data, the calculated values of rain force changes Δ, and the results of linear approximation of the Δ data. The second stage of the study resulted in changes in the hydraulic modes of runoff input during the design period and in 50 years. Conclusion. We experimentally substantiated the possibility to determine the dynamics of rain force changes (at P = 0.33 and with acceptable accuracy) depending on the dynamics of changes in the total annual precipitation. For networks designed and laid 50 years ago, the actual rain force changes will be 9 %. As a result of climate change, water consumption in the calculation periods increased by about 26% with an increase in the total volume of discharged water by 9–10 %.


2016 ◽  
Vol 29 (23) ◽  
pp. 8285-8299 ◽  
Author(s):  
Andrea J. Dittus ◽  
David J. Karoly ◽  
Sophie C. Lewis ◽  
Lisa V. Alexander ◽  
Markus G. Donat

Abstract The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario.


Author(s):  
S. Shami ◽  
Z. Ghorbani

Abstract. Water storage in regions with the weather hot and arid or semi-arid such as Iran have many uses. Including these water storage, can be referred to groundwater. Groundwater is one of the sources of sweet waters in the world, and one of the factors is economical and social development. Hence, monitoring its changes in water resources management is of great importance. On the other hand, precipitation is one of the factors directly affecting the water storage level and groundwater level changes. In this study, water storage changes with GRACE satellite data and total annual precipitation with CHIRPS data in the Google Earth Engine system investigated for Iran during 2003–2017. The results obtained from the GRACE satellite data indicate over 10 cm reducing of the water storage levels in Iran during the period between 2008 to 2017. Also, the chart obtained from the CHIRPS data for the total annual precipitation shows that the amount of rainfall since 2008 has decreased in this region.


Abstract Rainfall and snowfall have different effects on energy balance calculations and land-air interactions in terrestrial models. The identification of precipitation types is crucial to understand climate change dynamics and the utilization of water resources. However, information regarding precipitation types is not generally available. The precipitation obtained from meteorological stations across China recorded types only before 1979. This study parameterized precipitation types with air temperature, relative humidity and atmospheric pressure from 1960 to 1979, and then identified precipitation types after 1980. Results show that the main type of precipitation in China was rainfall, and the average annual rainfall days (amounts) across China accounted for 83.08% (92.55%) of the total annual precipitation days (amounts). The average annual snowfall days (amounts) in the northwestern region accounted for 32.27% (19.31%) of the total annual precipitation days (amounts), which is considerably higher than the national average. The average annual number of rainfall and snowfall days both displayed a downward trend while the average annual amounts of these two precipitation types showed an upward trend, but without significance at 0.1 levels. The annual number of rainfall and snowfall days in the southwestern region decreased significantly (-2.27 d/decade and -0.31 d/decade, p < 0.01). The annual rainfall amounts in the Jianghuai region increased significantly (40.70 mm/decade, p < 0.01), and the areas with the most significant increase in snowfall amounts were the northwestern (3.64 mm/decade, p < 0.01). These results can inform our understanding of the distribution and variation of precipitation with different types in China.


2020 ◽  
Vol 5 (10) ◽  
pp. e002696
Author(s):  
Paddy Ssentongo ◽  
Djibril M Ba ◽  
Claudio Fronterre ◽  
Vernon M Chinchilli

IntroductionTo investigate total annual precipitation, precipitation anomaly and aridity index in relation to linear growth in children under 5 in Uganda and quantify the mediating role of crop yield.MethodsWe analysed data of 5219 children under 5 years of age who participated in the 2016 Uganda Demographic and Health Survey. Annual crop yield in kilograms per hectare for 42 crops at a 0.1° (~10 km at the equator) spatial resolution square grid was obtained from the International Food Policy Research Institute. Normalised rainfall anomaly and total precipitation were derived from the African Rainfall Estimation Algorithm Version 2 product. Linear regression models were used to associate total annual precipitation and anomalies with height-for-age z-scores and to explore the mediating role of crop yield qualitatively. The intervening effects were quantitatively estimated by causal mediation models.ResultsTwenty-nine per cent of children were stunted (95% CI 28% to 31%). After adjusting for major covariates, higher total annual precipitation was significantly associated with increasing height-for-age z-scores. At the mean, an increase of 1 standard deviation in local annual rainfall was associated with a 0.07-point higher z-score. Aridity index and precipitation anomaly were not associated with height-for-age z scores in altitude-adjusted models. Crop yields of nuts, seeds, cereals and pulses were significant mediating factors. For instance, 38% of the association between total annual precipitation with height-for-age z-scores can be attributed to the yield of sesame seeds.ConclusionsHigher total annual precipitation at the village-level was significantly associated with higher height-for-age z-scores among children in Uganda. This association can be partially explained by higher crop yield, especially from seeds and nuts. This study suggests that more attention should be paid to villages with lower annual rainfall amounts to improve water availability for agriculture.


HortScience ◽  
2021 ◽  
Vol 56 (1) ◽  
pp. 71-78
Author(s):  
Qiang Zhang ◽  
Minji Li ◽  
Beibei Zhou ◽  
Junke Zhang ◽  
Qinping Wei

This study aimed to understand the effects of meteorological factors on the ‘Fuji’ apple quality in the Circum-Bohai and Loess Plateau apple production regions of China and to guide apple production based on local climate. Fruit samples of the ‘Fuji’ apple and meteorological data were investigated from 132 commercial ‘Fuji’ apple orchards covering 44 counties in the two aforementioned production regions (22 counties per region). The partial least-squares regression (PLSR) method was first used to screen major meteorological factors that greatly affected fruit quality; these were subsequently used to establish the regression equation of fruit quality attributes and major meteorological factors. Linear programming was used to estimate optimum meteorological factors for good apple quality. The results showed that in the Circum-Bohai production region, many meteorological factors (total annual precipitation, total precipitation from April to October, lowest temperature from April to October, sunshine percentage from April to October) were significantly higher than those in the Loess Plateau production region; however, the temperature difference between day and night from April to October was significantly smaller than that in the Loess Plateau production region. The soluble solids content and skin color area of apples from the Loess Plateau production region were significantly greater than those from the Circum-Bohai production region. The same fruit quality factor of ‘Fuji’ apple was affected by different meteorological factors in the two production regions. The monthly mean temperature and monthly highest temperature from April to October of the Circum-Bohai production region had relatively larger positive effect weights on fruit quality, whereas the total annual precipitation, monthly mean relative humidity from April to October, and total precipitation from April to October of the Loess Plateau production region had relatively larger positive effect weights on fruit quality. The major influencing meteorological factors of the fruit soluble solids content were total precipitation from April to October (X7), mean annual temperature (X1), and the monthly highest temperature from April to October (X5) in the Circum-Bohai production region; however, it included the monthly mean temperature difference between day and night from April to October (X6), total annual precipitation (X2), and total precipitation from April to October (X7) in the Loess Plateau production region. In the Circum-Bohai production region, the optimum meteorological factors for ‘Fuji’ fruit quality of vigorous apple orchards were the mean annual temperature (13.4 °C), total annual precipitation (981 mm), monthly mean temperature (16.8 to 22.4 °C), lowest temperature (11.9 °C), highest temperature (19.5 to 26.8 °C), temperature difference between day and night (12.3 °C), total precipitation (336–793 mm), relative humidity (55.7% to 70.7%), and sunshine percentage (42.3% to 46.1%) during the growing period (April–October). In the Loess Plateau production region, the optimum meteorological factors for ‘Fuji’ fruit quality of vigorous apple orchards were the mean annual temperature (5.5 to 11.6 °C), total annual precipitation (714 mm), monthly mean temperature (13.3 to 19.9 °C), lowest temperature (7.9 to 9.3 °C), highest temperature (19.6 to 27.3 °C), temperature difference between day and night (7.1 to 12.4 °C), total precipitation (338–511 mm), relative humidity (56.1% to 82.4%), and sunshine percentage (37.3% to 55.9%) during the growing period (April–October). The restrictive factors for high-quality ‘Fuji’ apples of the Circum-Bohai production region were the smaller monthly mean temperature difference between day and night, higher monthly mean lowest temperature, and larger monthly mean relative humidity during the growing period; however, those of the Loess Plateau production region were drought or less precipitation from November to March, lower monthly mean temperature, and higher monthly mean highest temperature during the growing period.


1902 ◽  
Vol 30 (13) ◽  
pp. c4-c4

Abstract This Chart is available in the print version.


Sign in / Sign up

Export Citation Format

Share Document