scholarly journals Effects of substrate concentration on bioethanol production from oil palm empty fruit bunches with simultaneous saccharification and fermentation (SSF)

Author(s):  
E Mardawati ◽  
A V Putri ◽  
T Yuliana ◽  
S Rahimah ◽  
S Nurjanah ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1944 ◽  
Author(s):  
Nur Md Razali ◽  
Mohamad Ibrahim ◽  
Ezyana Kamal Bahrin ◽  
Suraini Abd-Aziz

This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.


2015 ◽  
Vol 79 ◽  
pp. 784-790 ◽  
Author(s):  
Sureeporn Kumneadklang ◽  
Siriporn Larpkiattaworn ◽  
Chaisit Niyasom ◽  
Sompong O-Thong

Author(s):  
Khairul Hadi Burhan ◽  
Made Tri Ari Penia Kresnowati ◽  
Tjandra Setiadi

The biological process route of xylitol production from lignocellulosic materials, via enzymatic hydrolysis which is followed by fermentation, offers a more sustainable or greener process than the chemical process route. Both the enzymatic hydrolysis and the fermentation processes are conducted at moderate process condition and thus require less energy and chemicals. However, the process proceeds slower than the chemical one. In order to improve process performance, the enzymatic hydrolysis and the fermentation processes can be integrated as Simultaneous Saccharification and Fermentation (SSF) configuration. This paper discusses the evaluation of SSF configuration on xylitol production from Oil Palm Empty Fruit Bunches (OPEFB). To integrate two processes which have different optimum temperature, the performance of each process at various temperature was first evaluated. Later, SSF was evaluated at various hydrolysis and fermentation time at each optimum temperature. SSF showed better process performance than the separated hydrolysis and fermentation processes. The best result was obtained from configuration with 72 hours of prior hydrolysis followed by simultaneous hydrolysis and fermentation, giving yield of 0.08 g-xylitol/g-OPEFB. Copyright © 2019 BCREC Group. All rights reserved 


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


Sign in / Sign up

Export Citation Format

Share Document