scholarly journals Molecular Identification and Genetic Diversity of Thalassia hemprichii Through DNA Barcoding Using Internal Transcribed Spacer gene (ITS) from Awur Bay Jepara, Indonesia

Author(s):  
A N Faozi ◽  
T Harisam ◽  
M Pharmawati ◽  
B Marhaeni
2018 ◽  
Vol 13 (3) ◽  
pp. 191
Author(s):  
Melta Rini Fahmi ◽  
Erma Primanita Hayuningtyas ◽  
Mochammad Zamroni ◽  
Bastiar Nur ◽  
Shofihar Sinansari

Ikan tiger fish (Datnioides sp.) merupakan ikan hias air tawar yang memiliki nilai ekonomis penting. Distribusi populasi ikan ini meliputi Papua, Kalimantan, dan Sumatera, dengan tingkat eksploitasi yang cukup tinggi di dua lokasi terakhir. Penelitian ini dilakukan untuk mendapatkan informasi keragaman genetik ikan tiger fish yang mendiami perairan Kalimantan dan Sumatera. Sebanyak 24 sampel ikan uji dikoleksi dari Sungai Kapuas, Kalimantan Barat dan Sungai Musi, Sumatera Selatan. Penelitian dilakukan dalam dua tahap, tahap pertama yaitu identifikasi molekuler dengan menggunakan DNA barcoding gen cytochrome oxidase 1 (COI), tahap kedua adalah analisis keragaman genetik dengan menggunakan marka DNA mitokondria gen cytochrome b (Cyt b), dan DNA inti gen recombination activating gene (RAG2). Hasil identifikasi secara molekuler menunjukkan bahwa ikan hasil koleksi memiliki kesamaan genetik sebesar 100% dengan spesies D. undecimradiatus. Keragaman genetik ikan tiger fish antar populasi berkisar pada nilai 0,023 (standar deviasi 0,001) sedangkan keragaman intra populasi adalah sebesar 0,002 dan 0,003 masing-masing untuk populasi Kalimantan dan Sumatera. Jarak genetik sampel baik yang berasal dari Sumatera maupun Kalimantan dengan spesies D. undeciumradiatus masing-masing 0,003 dan 0,006; sedangkan dengan spesies D. microlepis yaitu 0,142. Analisis menggunakan gen RAG2 menunjukkan sampel yang diuji memiliki struktur populasi yang terpisah ditandai dengan terjadinya mutasi pada enam nukleotida dan tiga asam amino.The Tiger fish (Datnioides sp.) is a freshwater ornamental fish that has important economic value. The distribution of this fish included Papua, Kalimantan, and Sumatra, but intensive exploitation occurs in the last two population. This research was conducted to obtain the genetic diversity of tiger fish that inhabited in Kalimantan and Sumatra. A total of 24 fish were collected from Kapuas River, West Kalimantan and Musi River, at Sumatra. The study was conducted in two stages, the first stage is molecular identification of sample by using DNA barcoding cytochrome oxidase 1 (COI) gene, the second stage is analyses of genetic diversity of tiger fish within and between population by using the mitochondrial DNA cytochrome b (Cyt b) gene, and nucleus DNA recombination (RAG2) gene. The molecular identification has shown that the collected fish has a genetic similarity of 100% with D. undecimradiatus. The genetic diversity of tiger fish between populations is 0.023 (standard deviation of 0.001) whereas intra-population is 0.002 and 0.003 for Kalimantan and Sumatra, respectively. The genetic distance of samples with species D. undeciumradiatus were 0.003 and 0.006 for Kalimantan and Sumatera, respectively, whereas the genetic distance with D. microlepis was 0.142. The analysis of mutation on RAG2 gene shows there are six nucleotides and three amino acids have mutation.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
YH Kim ◽  
JA Ryuk ◽  
BS Ko ◽  
JW Lee ◽  
SE Oh ◽  
...  

Author(s):  
Qian Tang ◽  
Qi Luo ◽  
Qian Duan ◽  
Lei Deng ◽  
Renyi Zhang

Nowadays, the global fish consumption continues to rise along with the continuous growth of the population, which has led to the dilemma of overfishing of fishery resources. Especially high-value fish that are overfished are often replaced by other fish. Therefore, the accurate identification of fish products in the market is a problem worthy of attention. In this study, full-DNA barcoding (FDB) and mini-DNA barcoding (MDB) used to detect the fraud of fish products in Guiyang, Guizhou province in China. The molecular identification results showed that 39 of the 191 samples were not consistent with the labels. The mislabelling of fish products for fresh, frozen, cooked and canned were 11.70%, 20.00%, 34.09% and 50.00%, respectively. The average kimura 2 parameter distances of MDB within species and genera were 0.27% and 5.41%, respectively; while average distances of FDB were 0.17% within species and 6.17% within genera. In this study, commercial fraud is noticeable, most of the high-priced fish were replaced of low-priced fish with a similar feature. Our study indicated that DNA barcoding is a valid tool for the identification of fish products and that it allows an idea of conservation and monitoring efforts, while confirming the MDB as a reliable tool for fish products.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Victor Olusegun Oyetayo

Molecular identification of eighteenTermitomycesspecies collected from two states, Ondo and Ekiti in Nigeria was carried out using the internal transcribed spacer (ITS) region. The amplicons obtained from rDNA ofTermitomycesspecies were compared with existing sequences in the NCBI GenBank. The results of the ITS sequence analysis discriminated between all theTermitomycesspecies (obtained from Ondo and Ekiti States) andTermitomycessp. sequences obtained from NCBI GenBank. The degree of similarity of T1 to T18 to gene ofTermitomycessp. obtained from NCBI ranges between 82 and 99 percent.Termitomycesspecies from Garbon with ascension number AF321374 was the closest relative of T1 to T18 except T12 that has T. eurhizus and T. striatus as the closet relative. Phylogenetic tree generated with ITS sequences obtained from NCBI GenBank data revealed that T1 to T18 are more related toTermitomycesspecies indigenous to African countries such as Senegal, Congo, and Gabon.


2015 ◽  
Vol 27 (5) ◽  
pp. 3507-3510 ◽  
Author(s):  
Jian Zhao ◽  
Wei Li ◽  
Ping Wen ◽  
Dandan Zhang ◽  
Xinping Zhu

Author(s):  
Bishal Dhar ◽  
Mohua Chakraborty ◽  
Madhurima Chakraborty ◽  
Sorokhaibam Malvika ◽  
N. Neelima Devi ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. 3155-3162
Author(s):  
N S Sowmya ◽  
K Nandini ◽  
N Earanna ◽  
R S Sajeevan ◽  
Karaba Nataraja

2020 ◽  
Vol 52 (1) ◽  
pp. 71-75
Author(s):  
Maurizio Cornalba ◽  
Paolo Biella ◽  
Andrea Galimberti

DNA barcoding is well-known to support morphological species identification and it can be helpful for unveiling unexpected populations divergence patterns, especially in the context of the impacts on species posed by global change. In this note, we provided the first Italian record of the alpine mining bee Andrena allosa Warncke, 1975, confirmed with DNA barcoding. In addition, genetic identification of a specimen of Andrena praecox (Scopoli 1753) from western Italy pointed to an unexpected intraspecific genetic structuring at COI DNA barcoding region, with sequences from the Italian and the western sector of its global distribution differing 2.22% (p-dist) from populations of the eastern sector. Given the relevance of these records and of the genetic identity of bee populations from Italy, we argue that implementing molecular surveys in bee monitoring would surely contribute to the conservation of these important pollinators.


Sign in / Sign up

Export Citation Format

Share Document