scholarly journals Antimicrobial activity of lactic acid bacteria isolated from fermented durian flesh (tempoyak) against pathogenic and spoilage bacteria during storage

Author(s):  
A Nizori ◽  
A Sukendra ◽  
Surhaini Mursyid
2020 ◽  
Vol 10 (20) ◽  
pp. 7309
Author(s):  
Chrysa Voidarou ◽  
Athanasios Alexopoulos ◽  
Anastasios Tsinas ◽  
Georgios Rozos ◽  
Athina Tzora ◽  
...  

Screening natural products for bacteriocin-producing bacteria may be the equilibrium point between the consumer demand for mild processing and the industry’s need for hazard control. Raw unprocessed honeycombs filled with oregano honey from the alpine mountainous territory of Epirus, Greece were screened for bacteriocinogenic lactic acid bacteria and Bifidobacterium spp., with inhibitory action towards some pathogens and spoilage microorganisms isolated from fresh fruits and vegetables (number and type of strains: three E. coli, two L. monocytogenes, two Salmonella spp., two B.cereus, two Erwinia spp., one Xanthomonas spp., L. innocua (ATCC 33090TM) and E. coli 0157:H7 (ATCC 69373)). Among the 101 collected isolates (73 Lactobacillus, 8 Lactococcus, 8 Leuconostoc and 12 Bifidobacterium species) from the oregano honeycombs (an original finding since there are no other reports on the microbial biodiversity of the flora of the oregano honey), 49 strains of lactic acid bacteria (LAB) and Bifidobacterium spp. were selected and tested for their bacteriocin-producing capacity (34 Lactobacillus, 6 Lactococcus, 5 Leuconostoc and 4 Bifidobacterium). The antibacterial activity exerted by the tested LAB and Bifidobacterium strains was not of the same potency. Our results suggest that the main molecules involved in the antimicrobial activity are probably bacteriocin-like substances (a conclusion based on reduced antibacterial activity after the proteolytic treatment of the cell-free supernatant of the cultures) and this antimicrobial activity is specific for the producing strains as well as for the target strains. The spoilage bacteria as well as the reference microorganisms showed increased resistance to the bacteriocin-like substances in comparison to the wild-type pathogens.


1997 ◽  
Vol 60 (7) ◽  
pp. 786-794 ◽  
Author(s):  
ZHENNAI YANG ◽  
TARJA SUOMALAINEN ◽  
ANNIKA MÄYRÄ-MÄKINEN ◽  
EINE HUTTUNEN

Thirteen Lactobacillus and five Pediococcus strains were shown to produce an antimicrobial agent, 2-pyrrolidone-5-carboxylic acid (PCA). PCA inhibited many spoilage bacteria, particularly Enterobacter cloacae 1575, Pseudomonas fluorescens KJLG, and P. putida 1560-2. The antimicrobial activity of PCA did not change at higher temperatures. However, the activity was destroyed rapidly by neutralization with ammonium hydroxide. PCA showed slightly lower antimicrobial activity than lactic acid.


2014 ◽  
Vol 52 (7) ◽  
pp. 4124-4134 ◽  
Author(s):  
Joana Šalomskienė ◽  
Asta Abraitienė ◽  
Dovilė Jonkuvienė ◽  
Irena Mačionienė ◽  
Jūratė Repečkienė

Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Fernanda Cristina Kandalski Bortolotto ◽  
Maria Helena da Rosa Farfan ◽  
Nathalia Cristina Kleinke Jede ◽  
Gabriela Maia Danielski ◽  
Renata Ernlund Freitas de Macedo

ABSTRACT: Sausages are highly susceptible to microbial spoilage. Lactic acid bacteria (LAB) is the main group of spoilage bacteria in vacuum packed cooked sausages. To control microbial growth natural antimicrobials have been used as food preservatives. The aim of this study was to identify strains of lactic acid bacteria isolated from spoiled commercial Calabresa sausages and use them in an in vitro challenge with the natural antimicrobials, nisin (NI) and ε-poly-L-lysine (ε-PL). Mass spectrometry identification of LAB isolated from sausages using MALDI-TOF revealed a predominance of L. plantarum in the LAB population. RAPD-PCR of L. plantarum strains showed four different genetic profiles. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of NI and ε-PL, alone and in combination, against a pool of different profiles L. plantarum were determined. MIC of NI and ε-PL were 0.468 mg/ L and 75 mg/ L; respectively, whereas MBC of NI and ε-PL were 12.48 mg/L and 150 mg/L, respectively. The combined effect of NI and ε-PL was determined using concentrations at 1/4 and 1/8 of individual MICs. Synergistic effect was confirmed at both concentrations showing a fractional inhibitory concentration index of 0.5 and 0.2, respectively. The combination of NI and ε-PL at a small concentration of 0.05 mg/L and 9.375 mg/L, respectively, showed inhibitory effect towards spoilage L. plantarum Results show the potential of the combined use of NI and ε-PL to control sausage spoilage-associated with lactobacilli.


2010 ◽  
pp. 51-58 ◽  
Author(s):  
H. Belhadj ◽  
D. Harzallah ◽  
S. Khennouf ◽  
S. Dahamna ◽  
S. Bouharati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document