scholarly journals Electrochemical stability and ionic conductivity of solid electrolytes based on Li10GeP2S12-x A x (A=O, Se. x=0, 0.2, 0.4, 0.6, 0.8, 1)

Author(s):  
Shipai Song ◽  
Zongkai Yan ◽  
Fang Wu ◽  
Xiaokun Zhang ◽  
Yong Xiang
2017 ◽  
Vol 5 (34) ◽  
pp. 18012-18019 ◽  
Author(s):  
Guang Yang ◽  
Chalathorn Chanthad ◽  
Hyukkeun Oh ◽  
Ismail Alperen Ayhan ◽  
Qing Wang

Ionic liquid-based solid electrolytes with outstanding room-temperature ionic conductivity and excellent electrochemical stability are developed for all-solid-state Li metal batteries.


Electrochem ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 390-414
Author(s):  
Md Mozammal Raju ◽  
Fadhilah Altayran ◽  
Michael Johnson ◽  
Danling Wang ◽  
Qifeng Zhang

As an essential part of solid-state lithium-ion batteries, solid electrolytes are receiving increasing interest. Among all solid electrolytes, garnet-type Li7La3Zr2O12 (LLZO) has proven to be one of the most promising electrolytes because of its high ionic conductivity at room temperature, low activation energy, good chemical and electrochemical stability, and wide potential window. Since the first report of LLZO, extensive research has been done in both experimental investigations and theoretical simulations aiming to improve its performance and make LLZO a feasible solid electrolyte. These include developing different methods for the synthesis of LLZO, using different crucibles and different sintering temperatures to stabilize the crystal structure, and adopting different methods of cation doping to achieve more stable LLZO with a higher ionic conductivity and lower activation energy. It also includes intensive efforts made to reveal the mechanism of Li ion movement and understand its determination of the ionic conductivity of the material through molecular dynamic simulations. Nonetheless, more insightful study is expected in order to obtain LLZO with a higher ionic conductivity at room temperature and further improve chemical and electrochemical stability, while optimal multiple doping is thought to be a feasible and promising route. This review summarizes recent progress in the investigations of crystal structure and preparation of LLZO, and the impacts of doping on the lithium ionic conductivity of LLZO.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


Author(s):  
Ya-Hui Wang ◽  
Junpei Yue ◽  
Wen-Peng Wang ◽  
Wan-Ping Chen ◽  
Ying Zhang ◽  
...  

Due to high ionic conductivity, favorable mechanical plasticity, and non-flammable properties, inorganic sulfide solid electrolytes bring opportunities to the practical realization of rechargeable Li-metal batteries with high energy, yet their...


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3840
Author(s):  
Adrien Méry ◽  
Steeve Rousselot ◽  
David Lepage ◽  
Mickaël Dollé

All-solid-state lithium batteries (ASSLB) are very promising for the future development of next generation lithium battery systems due to their increased energy density and improved safety. ASSLB employing Solid Polymer Electrolytes (SPE) and Solid Composite Electrolytes (SCE) in particular have attracted significant attention. Among the several expected requirements for a battery system (high ionic conductivity, safety, mechanical stability), increasing the energy density and the cycle life relies on the electrochemical stability window of the SPE or SCE. Most published works target the importance of ionic conductivity (undoubtedly a crucial parameter) and often identify the Electrochemical Stability Window (ESW) of the electrolyte as a secondary parameter. In this review, we first present a summary of recent publications on SPE and SCE with a particular focus on the analysis of their electrochemical stability. The goal of the second part is to propose a review of optimized and improved electrochemical methods, leading to a better understanding and a better evaluation of the ESW of the SPE and the SCE which is, once again, a critical parameter for high stability and high performance ASSLB applications.


1988 ◽  
Vol 135 ◽  
Author(s):  
Werner Weppner

Solid State ion conductors are sucessfully employed in chemical sensors for gases such as oxygen for process control and environmental protection. The application requires elevated temperatures for sufficiently high ionic conductivity and is restricted to a few gases for which suitable solid electrolytes are available.


Sign in / Sign up

Export Citation Format

Share Document