Organic–inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries

2017 ◽  
Vol 5 (34) ◽  
pp. 18012-18019 ◽  
Author(s):  
Guang Yang ◽  
Chalathorn Chanthad ◽  
Hyukkeun Oh ◽  
Ismail Alperen Ayhan ◽  
Qing Wang

Ionic liquid-based solid electrolytes with outstanding room-temperature ionic conductivity and excellent electrochemical stability are developed for all-solid-state Li metal batteries.

2016 ◽  
Vol 4 (36) ◽  
pp. 13822-13829 ◽  
Author(s):  
Xiaowei Li ◽  
Sijian Li ◽  
Zhengxi Zhang ◽  
Jun Huang ◽  
Li Yang ◽  
...  

Hybrid ionogel electrolytes have high thermal and electrochemical stability, good ionic conductivity, and potential to suppress Li dendrite formation. Solid-state lithium metal batteries with hybrid electrolytes reveal high capacity and remarkable rate performance.


Author(s):  
Yanfei Huang ◽  
Tian Gu ◽  
Guanchun Rui ◽  
Peiran Shi ◽  
Wenbo Fu ◽  
...  

The extremely low room-temperature ionic conductivity of solid-state polymer electrolytes (SPEs) ranging from 10-7 to 10-5 S cm-1 seriously restricts their practical application in solid-state lithium metal batteries (LMBs). Herein,...


Author(s):  
Yuhang Zhang ◽  
Shimou Chen ◽  
Yong Chen ◽  
Lingdong Li

The interface issues of electrodes/solid-state electrolytes have been limiting the application for room-temperature lithium metal batteries. In-situ polymerization technology achieved the establishment of solid-solid ultra-conformal interface contacts. However, few considerations...


Electrochem ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 390-414
Author(s):  
Md Mozammal Raju ◽  
Fadhilah Altayran ◽  
Michael Johnson ◽  
Danling Wang ◽  
Qifeng Zhang

As an essential part of solid-state lithium-ion batteries, solid electrolytes are receiving increasing interest. Among all solid electrolytes, garnet-type Li7La3Zr2O12 (LLZO) has proven to be one of the most promising electrolytes because of its high ionic conductivity at room temperature, low activation energy, good chemical and electrochemical stability, and wide potential window. Since the first report of LLZO, extensive research has been done in both experimental investigations and theoretical simulations aiming to improve its performance and make LLZO a feasible solid electrolyte. These include developing different methods for the synthesis of LLZO, using different crucibles and different sintering temperatures to stabilize the crystal structure, and adopting different methods of cation doping to achieve more stable LLZO with a higher ionic conductivity and lower activation energy. It also includes intensive efforts made to reveal the mechanism of Li ion movement and understand its determination of the ionic conductivity of the material through molecular dynamic simulations. Nonetheless, more insightful study is expected in order to obtain LLZO with a higher ionic conductivity at room temperature and further improve chemical and electrochemical stability, while optimal multiple doping is thought to be a feasible and promising route. This review summarizes recent progress in the investigations of crystal structure and preparation of LLZO, and the impacts of doping on the lithium ionic conductivity of LLZO.


Author(s):  
zhangqin shi ◽  
Wenyao Guo ◽  
luozeng zhou ◽  
Qunjie Xu ◽  
Yulin Min

Polyethylene oxide (PEO)-based polymer electrolytes are potential replacements for safer solid electrolytes in next-generation lithium metal batteries. However, the lower room temperature ionic conductivity and poor mechanical properties greatly hinder...


Author(s):  
Liying Tian ◽  
Ying Liu ◽  
Zhe Su ◽  
Yu Cao ◽  
Wanyu Zhang ◽  
...  

Solid polymer electrolytes (SPEs) with good flexibility and low cost are very promising for all-solid-state lithium metal batteries, but they suffer from the trad-off between ionic conductivity at room temperature...


Sign in / Sign up

Export Citation Format

Share Document