scholarly journals Effect of phosphoric acid concentration on physicochemical properties of Abalistes stellaris skin gelatin

Author(s):  
A A Jaziri ◽  
H Muyasyaroh ◽  
M Firdaus
2014 ◽  
Vol 941-944 ◽  
pp. 1367-1371
Author(s):  
Liu Jie Xu ◽  
Bao Yuan Li ◽  
An Heng Si ◽  
Shi Zhong Wei

The corrosion property of high chromium cast iron was test under different phosphoric acid medium concentration. On the base of experimental data, the binary equation model of corrosion weight loss (W) versus phosphoric acid concentration and corrosion time (c, t) was built using multiple regression analysis, which can predict corrosion property of high chromium cast iron effectively. The prediction results show that the corrosion weight loss rises lineally with increasing corrosion time, and the corrosion rate rises quadratically with increasing phosphoric acid concentration. The corrosion failure mechanism is that chromium composite carbides (M7C3) stand out of matrixes surface after the matrixes composed of martensite and austenite are corroded firstly, then the M7C3 carbides drop out of matrixes when the matrixes can not wrap M7C3 carbides, resulting gradual corrosion of high chromium cast iron. The prediction values have sufficiently mined the basic domain knowledge of corrosion process of high chromium cast iron under phosphoric acid medium. Therefore, a new way of predicting corrosion property according to corrosion conditions was provided by the authors.


2011 ◽  
Vol 287-290 ◽  
pp. 2094-2101
Author(s):  
Zi Yu Liu ◽  
Yue Qi ◽  
Ying Xu Wei ◽  
Zong Bin Wu ◽  
Zhong Min Liu

A mesostructured zirconium oxide was synthesized hydrothermally using cetyltrimethylammonium bromide (CTAB) as the structure-directing agent and ZrSO4. 4H2O as the reactant. Subsequent post-synthetic treatment with H3PO4followed by the treatment with AlCl3solutions resulted in mesoporous Zr-P-Al materials, which exhibited high BET specific surface area before calcination. The phosphoric acid concentrationaffected the textual data of the resulting Zr-P and Zr-P-Al materials greatly. 0.1-0.5 M H3PO4increased obviously the long-range order of the as-synthesized Zr-P materials while 0.76 M H3PO4decreased it. After calcination at 773 K, the Zr-P materials turned to nonporous materials except the one synthesized by 0.5 M H3PO4, which showed micropores with a BET specific surface area of 147 m2/g. Further treating the Zr-P materials (synthesized from different concentration of phosphoric acid) with the same amount of AlCl3solution resulted in mesoporous Zr-P-Al materials, but the long-range order of which decreased when the H3PO4concentration increased. Similarly, the BET specific surface area of the above-mentioned Zr-P-Al materials decreased from 462 m2/g for 0.25 M H3PO4to 394 m2/g for 0.5 M H3PO4and finally to 332 m2/g for 0.76 M H3PO4after calcination at 773 K, while the pore size increased gradually from 3.0 to 3.5 nm. It was found that about 90% of the CTAB had been removed during the AlCl3treatment and that the as-synthesized Zr-P-Al materials exhibited high BET specific surface area as well as mesopores. The AlCl3amount is another factor affecting the textual data of the uncalcined Zr-P-Al materials besides the H3PO4concentration. With the phosphoric acid concentration of 0.25 M, the BET specific surface area of the as-synthesized Zr-P-Al materials increased from 477 m2/g to as high as 734 m2/g with the increasing AlCl3amount before it decreased from then on.


Author(s):  
M R M Adib ◽  
W M S W Suraya ◽  
H Rafidah ◽  
A R M Amirza ◽  
M H M N Attahirah ◽  
...  

2018 ◽  
Vol 34 ◽  
pp. e79
Author(s):  
A. Moraes Devito ◽  
C. Francci ◽  
C. Vidal ◽  
P. Scaffa ◽  
D. Nesadal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document