scholarly journals Analysis of internal force and displacement of foundation pit pile anchor supporting structure based on soil frost heaving

Author(s):  
Dongmei Shi ◽  
Yuanxun Li ◽  
Xinya Gao ◽  
Shuanghao Li ◽  
Tian Xiang
2012 ◽  
Vol 204-208 ◽  
pp. 72-78
Author(s):  
Yu Wang ◽  
Yan Ting Yang ◽  
Feng Yu ◽  
Guang Lei Hu

Double-row piles retaining structure has been widely used in the project now, but the stress mechanism of double-row pile is more complex; Its internal force and deformation are affected by many factors. Understanding and mastering its effects has an important significance for the design and the optimization of double-row pile supporting structure. According to the comparison of the measured data and theoretical calculation about original support scheme and optimized support plan and combined with the soil test data, this paper takes the Jinan Cultural Arts Center(Theatre) stage bin foundation pit as an example to analyse the main effects of optimization design about double-pile supporting structure. The results show that soil shear strength, soil arch effect, influence of CFG composite foundation, pile-beam synergy effect and space effect of foundation pit play an important role for optimization design about double-pile supporting structure.


2011 ◽  
Vol 368-373 ◽  
pp. 2760-2763
Author(s):  
Qiang Wang ◽  
Li Yuan Tong

The elastic foundation beam method is the main method of stress analysis of the supporting structure of the foundation pit, it can easily calculate the internal forces and displacement of the structure, however, the computing method of elastic foundation beam deflection equation is more complicated. So according to the computation principle and method of elastic foundation beam, a computing program has been programmed by MATLAB mathematical software. The program has been applied to compute the internal force and deformation of deep foundation pit of Suzhou subway station. The variation law of displacement and bending moment of supporting structure during excavation has been obtained. The results of the measured and calculated agree well, and the computing results have efficiently guided and optimized supporting design.


2012 ◽  
Vol 446-449 ◽  
pp. 1797-1803
Author(s):  
Ai Jun Yao ◽  
Xin Dong Zhang ◽  
Xian Jun Zou

Taking the deformation of row pile supporting structure of foundation pit in strata with rock-soil combination as the research target and taking an open cut metro deep foundation pit as an example, by in-site monitoring and numerical simulation, analyze the horizontal displacement of retaining piles and the change law of steel support axial force in the strata with rock-soil combination, and summarize the change law of row pile supporting structure in the process of excavation under the conditions of this strata, so that to provide experience and guidance for similar engineering design and construction. The results show that: the structure of foundation pit has obvious effects on deformation and internal force of supporting structure, the result obtained from numerical simulation fits well with the tendency of monitoring data changing. In which, the deformation of row pile supporting structure in the middle and upper part of soil strata is larger, the deformation of middle and lower part of soil strata is comparatively smaller, the lateral deformation of row piles to basement has a tendency of gradual decreasing by taking the interface of rock-soil as a boundary.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2013 ◽  
Vol 838-841 ◽  
pp. 779-785
Author(s):  
Liang Gu

The double-row piles supporting structure is a new type of supporting and protecting for deep foundation excavation. It is widely used to in design of deep foundation pit. Now how to simply and effectively design the structure of double-row piles is in a research and discuss stage. Using the Midas GTS finite element method, the displacement and stress distribution of double-row piles in the different stages of excavation are obtained, and the horizontal displacement and stress distribution of double-row piles in the different stages of excavation are calculated. The results of Midas GTS finite element analysis as follows: (1) after the excavation of foundation pit, the horizontal displacement of pile-top is maximum. The horizontal displacement decreases gradually with depth increases. And the displacement of front row piles is larger than that of back row piles; (2) the maximum shear stress is at the distance 5m to the foundation basement. The higher bending moment at the pile-top and the distance 10m to the foundation basement are consistent with the actual monitoring date. (3) the results of finite element analysis is close to the Richard software and actual monitoring data. It is show that using the finite element analysis to analyze the double-row piles supporting structure with is veritable and credible.


2013 ◽  
Vol 353-356 ◽  
pp. 692-695
Author(s):  
Chang Zhi Zhu ◽  
Quan Chen Gao

Based on an Engineering Example which was supported by the stepped soil-nail wall, a numerical analysis model was established by FLAC3D,and the process of the excavation and supporting was simulated, and the numerical results of the soil nails internal force and foundation pit deformation were obtained. The simulated result was consistent with the measured results. It shows that the method of FLAC3D numerical analysis can be used to the numerical analysis of foundation pit excavation and supporting, and it will provide the basis for the design and construction of practice project.


Sign in / Sign up

Export Citation Format

Share Document