Analysis Method of Internal Force Deformation and Influencing Factors of Chair-Type Double-Row Pile Supporting Structure

2021 ◽  
Vol 10 (04) ◽  
pp. 295-303
Author(s):  
斯顿 贺
2012 ◽  
Vol 204-208 ◽  
pp. 72-78
Author(s):  
Yu Wang ◽  
Yan Ting Yang ◽  
Feng Yu ◽  
Guang Lei Hu

Double-row piles retaining structure has been widely used in the project now, but the stress mechanism of double-row pile is more complex; Its internal force and deformation are affected by many factors. Understanding and mastering its effects has an important significance for the design and the optimization of double-row pile supporting structure. According to the comparison of the measured data and theoretical calculation about original support scheme and optimized support plan and combined with the soil test data, this paper takes the Jinan Cultural Arts Center(Theatre) stage bin foundation pit as an example to analyse the main effects of optimization design about double-pile supporting structure. The results show that soil shear strength, soil arch effect, influence of CFG composite foundation, pile-beam synergy effect and space effect of foundation pit play an important role for optimization design about double-pile supporting structure.


2013 ◽  
Vol 838-841 ◽  
pp. 779-785
Author(s):  
Liang Gu

The double-row piles supporting structure is a new type of supporting and protecting for deep foundation excavation. It is widely used to in design of deep foundation pit. Now how to simply and effectively design the structure of double-row piles is in a research and discuss stage. Using the Midas GTS finite element method, the displacement and stress distribution of double-row piles in the different stages of excavation are obtained, and the horizontal displacement and stress distribution of double-row piles in the different stages of excavation are calculated. The results of Midas GTS finite element analysis as follows: (1) after the excavation of foundation pit, the horizontal displacement of pile-top is maximum. The horizontal displacement decreases gradually with depth increases. And the displacement of front row piles is larger than that of back row piles; (2) the maximum shear stress is at the distance 5m to the foundation basement. The higher bending moment at the pile-top and the distance 10m to the foundation basement are consistent with the actual monitoring date. (3) the results of finite element analysis is close to the Richard software and actual monitoring data. It is show that using the finite element analysis to analyze the double-row piles supporting structure with is veritable and credible.


2013 ◽  
Vol 438-439 ◽  
pp. 949-953
Author(s):  
Hao Bo Fan ◽  
Jin Xing Lai ◽  
Dan Dan Hou

This paper based on Chaoyang tunnel by bench method excavation, using the finite element numerical simulation method, simulates the surrounding rock displacement of soft rock tunnel and the stress characteristics of supporting structure to get the various stages of tunnel surrounding rock stress, strain and the internal force changes of tunnel supporting structure. After the analyses of the numerical simulation results and field monitoring measurement data, the safety and rationality of the method are determined. The research provides certain reference for highway tunnel design and construction.


2020 ◽  
Vol 87 (7) ◽  
Author(s):  
Hao Gao ◽  
Bingen Yang

Abstract Flexible structures carrying moving subsystems are found in various engineering applications. Periodic passage of subsystems over a supporting structure can induce parametric resonance, causing vibration with ever-increasing amplitude in the structure. Instead of its engineering implications, parametric excitation of a structure with sequentially passing oscillators has not been well addressed. The dynamic stability in such a moving-oscillator problem, due to viscoelastic coupling between the supporting structure and moving oscillators, is different from that in a moving-mass problem. In this paper, parametric resonance of coupled structure-moving oscillator systems is thoroughly examined, and a new stability analysis method is proposed. In the development, a set of sequential state equations is first derived, leading to a model for structures carrying a sequence of moving oscillators. Through the introduction of a mapping matrix, a set of stability criteria on parametric resonance is then established. Being of analytical form, these criteria can accurately and efficiently predict the dynamic stability of a coupled structure-moving oscillator system. In addition, by the spectral radius of the mapping matrix, the global stability of a coupled system can be conveniently investigated in a parameter space. The system model and stability criteria are illustrated and validated in numerical examples.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhuangzhi Yang ◽  
Yuqing Wang ◽  
Lin Song ◽  
Xinyu Wang

Understanding the internal force distribution and prejudging the weak part of tunnel supporting structure under complicated construction surroundings have become one of the important measures to ensure the safety of tunnel construction. Based on the initial parameter method and field-monitoring results of surrounding rock pressure, the theory of beam on elastic foundation is employed to derive the analytical solution of primary support internal forces. By combining the monitored data of rock pressure in one tunnel, solution of primary support internal force of a section is back analyzed and weak parts of the primary support are analyzed and evaluated. The results show that, after the tunnel excavation is completed, the internal forces of the primary support of the tunnel arch grow larger over time. When θ > 1.0, the internal forces change greatly. The internal force of the primary support decreased to different extents within 2 days after the primary support was applied and then gradually increased over time. Considering the situationality and changeability of the tunnel construction process, the analytical solution for the primary support internal forces of a multicenter arch tunnel proposed in this paper has a strong feasibility in tunnel construction. The conclusions obtained here could provide theoretical support for the design of supporting structure and the optimization of tunnel construction technology.


Author(s):  
Xianguang Kong ◽  
Jiantao Chang ◽  
Pei Wang ◽  
Siyi Gong ◽  
Yabin Shi ◽  
...  

Fault-influencing factors analysis is an important part of the quality supervision process. There are double functions for high-voltage switchgears that switch off and protect electric circuits in power transmission lines. Such devices have serious impact on power grid–operating efficiency, factory operation, and resident life, which will cause economic losses. As it was difficult for traditional methods to analyze fault-influencing factors accurately and comprehensively, a novel method based on industrial big data was proposed to analyze high-voltage switchgears fault-influencing factors in the process of quality supervision in this article, which integrated the qualitative and quantitative analyses method. In this model, the Classification Based on Multiple Class-Association Rules based on Gaussian Mixture Model as the qualitative analysis method was adapted to analyze the whole life cycle of fault-influencing factors of high-voltage switchgears comprehensively, and supplied fault-influencing factors with discrete interval value ranges. The logistic regression method based on qualitative analysis was constructed to calculate fault occurrence probability quantitatively, including the single-fault occurrence probability and the multiple-faults joint occurrence probability. In addition, the single-fault occurrence probability was used to modify the discrete interval value ranges calculated by the qualitative analysis method, which could make the ranges more accurately. Consequently, the proposed method could provide important reference for high-voltage switchgears operation maintenance, and it would be possible to design accurate maintenance plans before equipment failure. The final instance demonstrates the effectiveness of the proposed methodology.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1331-1336
Author(s):  
Jin Sheng Han ◽  
Ke Wei Chu ◽  
Gao Chao Lv ◽  
Shen Li

The fire resistance ability of load-bearing column of building structure under fire is an important aspect affecting the safety of the structure. Although a large number of research results have been achieved in this respect, the researches on the numerical analysis of the bearing capacity and deformation process at high temperature are still not sufficient. The numerical simulation of the bearing capacity and deformation process at high temperature is hard to carry out and complex to operate, and not practical as well. Therefore, simplified analysis method is adopted to analyze the deformation and internal force of the controlling section of the load-bearing column subjected to fire. Besides, taking the concrete filled circular steel tubular column as example, the basic analysis theory of the fire resistance and the deformation performance of columns subjected to constant load is presented. The numerical calculation program which is developed on the basis of this theory can well simulate the process of deformation and the fire resistance of the columns subjected to fire. The simulation results are in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document