scholarly journals Numerical study on thermohydraulic behavior in evaporator section of wicked copper-water heat pipe at low superheat

2021 ◽  
Vol 680 (1) ◽  
pp. 012074
Author(s):  
Xidong Zhu ◽  
Yu Dong ◽  
Jianjie Cheng ◽  
Yao Yao ◽  
Jun Bao ◽  
...  
2019 ◽  
Vol 12 (2) ◽  
pp. 90-97
Author(s):  
Basil Noori Merzah ◽  
Majid H. Majeed ◽  
Fouad A. Saleh

In this work, a system of a heat pipe is implemented to improve the performance of flat plate solar collector. The model is represented by square shape portion of the evaporator section of wicked heat pipe with a constant total length of 510 mm, and the evaporator section inclined by an angle of 30o. In this models the evaporator, adiabatic and condenser lengths are 140mm, 140mm, and 230mm respectively. The omitted energies from sunlight simulator are 200, 400, 600, 800 and 1000 W/m2 which is close to the normal solar energy in Iraq. The working fluid for all models is water with fill charge ratio of 240%. The efficiency of the solar collector is investigated with three values of condenser inlet water temperatures, namely (12, 16 and 20o C). The numerical result showed an optimum volume flow rate of cooling water in condenser at which the efficiency of collector is a maximum. This optimum agree well with the ASHRAE standard volume of flow rate for conventional tasting for flat plate solar collector. When the radiation incident increases the thermal resistance of wicked heat pipe is decreases, where the heat transfer from the evaporator to condenser increases. The numerical results showed the performance of solar collector with square shape evaporator greater than other types of evaporator as a ratio 15 %.


2018 ◽  
Vol 49 (17) ◽  
pp. 1721-1744 ◽  
Author(s):  
Adnan Sözen ◽  
Erdem Çiftçi ◽  
Selçuk Keçel ◽  
Metin Gürü ◽  
Halil Ibrahim Variyenli ◽  
...  

Author(s):  
D. Sugumar ◽  
Kek Kiong Tio

A micro heat pipe will operate effectively by achieving its maximum possible heat transport capacity only if it is to operate at a specific temperature, i.e., design temperature. In reality, micro heat pipe’s may be required to operate at temperatures different from the design temperature. In this study, the heat transport capacity of an equilateral triangle micro heat pipe is investigated. The micro heat pipe is filled optimally with working fluid for a specific design temperature and operated at different operating temperatures. For this purpose, water, pentane and acetone was selected as the working fluids. From the numerical results obtained, it shows that the optimal charge level of the micro heat pipe is dependent on the operating temperature. Furthermore, the results also shows that if the micro heat pipe is to be operated at temperatures other than its design temperature, its heat transport capacity is limited by the occurrence of flooding at the condenser section or dryout at the evaporator section, depending on the operating temperature and type of working fluid. It is observed that when the micro heat pipe is operated at a higher temperature than its design temperature, the heat transport capacity increases but limited by the onset of dryout at the evaporator section. However, the heat transport capacity decreases if it is to be operated at lower temperatures than its design temperature due to the occurrence of flooding at condenser end. From the results obtained, we can conclude that the performance of a micro heat pipe is decreased if it is to be operated at temperatures other than its design temperature.


1968 ◽  
Vol 90 (4) ◽  
pp. 547-552 ◽  
Author(s):  
E. K. Levy

A one-dimensional analysis of a compressible vapor flowing within the evaporator section of a heat pipe is presented. Comparisons between the theoretical results and existing heat pipe data show that the presence of gasdynamic choking can limit the heat transfer capacity of a heat pipe operating at sufficiently low vapor pressures.


Author(s):  
Brian S. Robinson ◽  
M. Keith Sharp

Thermal performance of an improved passive solar heat pipe system was directly compared to that of a previous prototype. Simulated and experimental results for the first prototype established baseline performance. Subsequently, potential improvements were simulated, and a second prototype was built and tested along side the first. The system uses heat pipes for high rates of heat transfer into the building, and limited losses in the reverse direction. The evaporator section of each heat pipe is attached to a glass-covered absorber on the outside of a south wall, and the slightly elevated condenser section is either immersed in water in a thermal storage tank or exposed to air in the room. Two-phase flow occurs in the heat pipe only when the evaporator is warmer than the condenser, creating a thermal diode effect. Computer simulations showed that system performance could be improved by using thicker insulation between the absorber and the storage tanks, and by switching from a copper to a rubber adiabatic section, which both reduced heat losses to ambient from the storage tanks. Early morning heating was improved by exposing one of five condensers directly to room air, which also improved overall system efficiency. A copper solar absorber soldered to the copper evaporator section improved heat conduction compared to the previous aluminum absorber bonded to the copper evaporator. Together these modifications improved simulated annual solar fraction by 20.8%. The new prototype incorporating these changes was tested along side the previous prototype in a two-room passive solar test facility during January through February of 2013. Temperatures were monitored with thermocouples at multiple locations throughout the systems, in each room and outdoors. Insolation was measured by four pyranometers attached to the building. Results showed that the design modifications implemented for the new model increased thermal gains to storage and to the room, and decreased thermal losses to ambient. The load-to-collector ratio for the experiments was 2.7 times lower than for the simulations, which decreased the potential for experimental improvements compared to the simulated improvements. However, average daily peak efficiency for the new system was 85.0%, compared to 80.7% for the previous system. Furthermore, the average storage temperature over the entire testing period for the new model was 13.4% higher than that of the previous model, while the average room temperature over the same period was 24.6% greater for the new system.


2019 ◽  
Vol 18 ◽  
pp. 1006-1016 ◽  
Author(s):  
Naveen Kumar Gupta ◽  
Aman Barua ◽  
Shashwat Mishra ◽  
Shubham Kumar Singh ◽  
Arun Kr Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document